Research progress on the mechanism of sulfur poisoning and resistance improvement of noble metal catalysts

Journal Title: Energy Environmental Protection - Year 2024, Vol 38, Issue 4

Abstract

SO_2 impurities are commonly encountered in practical industrial exhaust gases. During catalytic purification processes, SO_2 molecules compete with reactants for active sites. Particularly, SO_2 can undergo chemical reactions with noble metals, forming sulfate salts. This interaction weakens electron transfer capabilities, leading to severe and irreversible sulfur poisoning of catalysts. Therefore, efficiently regenerating sulfur-poisoned catalysts or designing sulfur-resistant catalysts has become a crucial challenge in the field of environmental catalysis. This paper begins by analyzing the adsorption, migration, and transformation processes of SO_2 on noble-metal based catalysts. It then explores methods for regenerating sulfur-poisoned catalysts and elucidates the involved mechanisms. Subsequently, it summarizes strategies for designing noble-metal based catalysts with excellent sulfur-resistance, including active phase regulation, support modification, and the construction of encapsulated structures, emphasizing that the key to developing sulfur-resistant catalysts lies in enhancing metal-metal/support interactions. Finally, it discusses future research directions for noble-metal based catalysts with excellent sulfur-resistance, aiming to provide guidance for the optimized design of industrial sulfur-resistant catalysts.

Authors and Affiliations

XIANG Li|College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China, WANG Shengdi|Wuchan Zhongda Yuantong Automobile Co., Ltd., Hangzhou 311200, China, WENG Xiaole*|College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China,

Keywords

Related Articles

Recent progress in metal-substrate supported monolithic catalysts for CO_2 methanation

With the goal of carbon neutrality, CO_2 methanation technology can not only solve the environmental problems caused by CO_2 emissions, but also convert CO_2 into CH_4 to alleviate problems such as the energy shortages....

Application of HHO-CNN-LSTM-based CMAQ correction model in air quality forecasting in Shanghai

With rising levels of air-pollution, air-quality forecasting has become integral to the dissemination of human health advisories and the preparation of mitigation strategies. Traditional air quality models, such as the C...

Study on MnO_2-supported noble metal catalysts for CO catalytic oxidation at low temperature

A series of MnO_2-supported noble metal catalysts (Pd/MnO_2、Ru/MnO_2、Ag/MnO_2 and Pt/MnO_2) with a noble metal loading of 3.0% were synthesized by redox precipitation. The catalytic oxidation ability of CO followed the...

Peracetic acid activation for degradation of emerging contaminants: Processes, performance and mechanism

The removal of emerging contaminants (ECs) from water has been a hotspot and a challenge in the field of environmental engineering. Advanced oxidation processes (AOPs) based on peracetic acid (PAA) activation can generat...

Research progress on catalyst sulfur poisoning process and mechanism in catalytic combustion of toluene reaction

Volatile organic compounds (VOCs) are characterized by large emissions, a wide range of sources, and various types. Catalytic combustion, as one of the most efficient treatment technologies, has attracted much attention...

Download PDF file
  • EP ID EP743126
  • DOI 10.20078/j.eep.20240706
  • Views 31
  • Downloads 0

How To Cite

XIANG Li, WANG Shengdi, WENG Xiaole* (2024). Research progress on the mechanism of sulfur poisoning and resistance improvement of noble metal catalysts. Energy Environmental Protection, 38(4), -. https://europub.co.uk/articles/-A-743126