Routing Attack Detection Using Ensemble Deep Learning Model for IIoT

Journal Title: Information Dynamics and Applications - Year 2023, Vol 2, Issue 1

Abstract

Smart cities, ITS, supply chains, and smart industries may all be developed with minimal human interaction thanks to the increasing prevalence of automation enabled by machine-type communication (MTC). Yet, MTC has substantial security difficulties because of diverse data, public network access, and an insufficient security mechanism. In this study, we develop a novel IIOT attack detection basis by joining the following four main steps: (a) data collection, (b) pre-processing, (c) attack detection, and (d) optimisation for high classification accuracy. At the initial stage of processing, known as "pre-processing," the collected raw data (input) is normalised. Attack detection requires the creation of an intelligent security architecture for IIoT networks. In this work, we present a learning model that can recognise previously unrecognised attacks on an IIoT network without the use of a labelled training set. An IoT network intrusion detection system-generated labelled dataset. The study also introduces a hybrid optimisation algorithm for pinpointing the optimal LSTM weight when it comes to intrusion detection. When trained on the labelled dataset provided by the proposed method, the improved LSTM outperforms the other models with a finding accuracy of 95%, as exposed in the research.

Authors and Affiliations

Ramesh Vatambeti, Gowtham Mamidisetti

Keywords

Related Articles

A Comparative Review of Internet of Things Model Workload Distribution Techniques in Fog Computing Networks

In the realm of fog computing (FC), a vast array of intelligent devices collaborates within an intricate network, a synergy that, while promising, has not been without its challenges. These challenges, including data los...

Examining Public Perceptions of UK Rail Strikes: A Text Analytics Approach Using Twitter Data

Social media, particularly Twitter, has emerged as a vital platform for understanding public opinion on contemporary issues. This study investigates public attitudes towards UK rail strikes by analyzing Twitter data and...

A Deep Convolutional Neural Network Framework for Enhancing Brain Tumor Diagnosis on MRI Scans

Brain tumors are a critical public health concern, often resulting in limited life expectancy for patients. Accurate diagnosis of brain tumors is crucial to develop effective treatment strategies and improve patients' qu...

Routing Attack Detection Using Ensemble Deep Learning Model for IIoT

Smart cities, ITS, supply chains, and smart industries may all be developed with minimal human interaction thanks to the increasing prevalence of automation enabled by machine-type communication (MTC). Yet, MTC has subst...

Critical Factors Influencing Cloud Security Posture of Enterprises: An Empirical Analysis

This study examines the aspects that can impact an organization's cloud security posture and the consequences for their cloud adoption strategies. Based on a thorough examination of existing literature, a conceptual fram...

Download PDF file
  • EP ID EP732635
  • DOI https://doi.org/10.56578/ida020104
  • Views 60
  • Downloads 0

How To Cite

Ramesh Vatambeti, Gowtham Mamidisetti (2023). Routing Attack Detection Using Ensemble Deep Learning Model for IIoT. Information Dynamics and Applications, 2(1), -. https://europub.co.uk/articles/-A-732635