Scalable Data Analytics Market Basket Model for Transactional Data Streams
Journal Title: International Journal of Advanced Computer Science & Applications - Year 2019, Vol 10, Issue 10
Abstract
Transactional data streams (TDS) are incremental in nature thus, the process of mining is complicated. Such complications arise from challenges such as infinite length, feature evolution, concept evolution and concept drift. Tracking concept drift challenge is very difficult, thus very important for Market Basket Analysis (MBA) applications. Hence, the need for a strategy to accurately determine the suitability of item pairs within the available billions of pairs to solve concept drift chalenge of TDS in MBA. In this work, a Scalable Data Analytics Market Basket Model (SDAMBM) that handles concept drift issues in MBA was developed. Transactional data of 1,112,000 were extracted from a grocery store using Extraction, Transformation and Loading approach and 556,000 instances of the data were simulated from a cloud database. Calibev function was used to caliberate the data nodes. Lugui 7.2.9 and Comprehensive R Archive Network were used for table pivoting between the simulated data and the data collected. The SDAMBM was developed using a combination of components from elixir big data architecture, the research conceptual model and consumer behavior theories. Toad Modeler was then used to assemble the model. The SDAMBM was implemented using Monarch and Tableau to generate insights and data visualization of the transactions. Intelligent interpreters for auto decision grid, selectivity mechanism and customer insights were used as metrics to evaluate the model. The result showed that 79% of the customers from the customers’ consumption pattern of the SDAMBM preferred buying snacks and drink as shown in the visualization report through the SDAMBM visualization dashboard. Finally, this study provided a data analytics approach for managing concept drift challenge in customers’ buying pattern. Furthermore, a distinctive model for managing concept drift was also achieved. It is therefore recommended that the SDAMBM should be adopted for the enhancement of customers buying and consumption pattern by business ventures, organizations and retailers.
Authors and Affiliations
Aaron A. Izang, Nicolae Goga, Shade O. Kuyoro, Olujimi D. Alao, Ayokunle A. Omotunde, Adesina K. Adio
HOG-AdaBoost Implementation for Human Detection Employing FPGA ALTERA DE2-115
Human detection system using Histogram of Oriented Gradients (HOG) feature and AdaBoost classifier (HOG-AdaBoost) in FPGA ALTERA DE2-115 are presented in this paper. This work is expanded version from our previous study....
Profile-Based Semantic Method using Heuristics for Web Search Personalization
User profiles play a critical role in personalizing user search. It assists search systems in retrieving relevant information that is searched on the web considering the user needs. Researchers presented a vast number of...
Pattern Discovery Using Association Rules
The explosive growth of Internet has given rise to many websites which maintain large amount of user information. To utilize this information, identifying usage pattern of users is very important. Web usage mining...
Design and Analysis of a Novel Low-Power SRAM Bit-Cell Structure at Deep-Sub-Micron CMOS Technology for Mobile Multimedia Applications
The growing demand for high density VLSI circuits and the exponential dependency of the leakage current on the oxide thickness is becoming a major challenge in deep-sub-micron CMOS technology. In this work, a novel Stati...
Permutation of Web Search Query Types for User Intent Privacy
Privacy remains a major concern when using search engines to find for information on the web due to the fact that search engines own massive resources in preserving search logs of each user and organizations. However, ma...