Some Fixed Point Theorems for G-Nonexpansive Mappings on Ultrametric Spaces and Non-Archimedean Normed Spaces with a Graph
Journal Title: Journal of Mathematics and Applications - Year 2016, Vol 39, Issue
Abstract
A very interesting approach in the theory of fixed point is some general structures was recently given by Jachymski by using the context of metric spaces endowed with a graph. The purpose of this article is to present some new fixed point results for G-nonexpansive mappings defined on an ultrametric space and non-Archimedean normed space which are endowed with a graph. In particular, we investigate the relationship between weak connectivity graph and the existence of fixed point for these mappings.
Authors and Affiliations
Hamid Mamghaderi, Hashem Parvaneh Masiha
On Some Qualitative Properties of Integrable Solutions for Cauchy-type Problem of Fractional Order
The paper discusses the existence of solutions for Cauchy-type problem of fractional order in the space of Lebesgue integrable functions on bounded interval. Some qualitative properties of solutions are presented such as...
Some New Existence Results and Stability Concepts for Fractional Partial Random Differential Equations
In the present paper we provide some existence results and Ulam's type stability concepts for the Darboux problem of partial fractional random differential equations in Banach spaces, by applying the measure of noncompac...
Measures of Noncompactness in a Banach Algebra and Their Applications
In this paper we study the existence of solutions of a nonlinear quadratic integral equation of fractional order. This equation is considered in the Banach space of real functions defined, continuous and bounded on the...
Weak Solutions of Fractional Order Differential Equations via Volterra-Stieltjes Integral Operator
The fractional derivative of the Riemann-Liouville and Caputo types played an important role in the development of the theory of fractional derivatives, integrals and for its applications in pure mathematics ([18], [21])...
On the Existence of Solutions of a Perturbed Functional Integral Equation in the Space of Lebesgue Integrable Functions on ℝ+
In this paper, we investigate and study the existence of solutions for perturbed functional integral equations of convolution type using Darbo's fixed point theorem, which is associated with the measure of noncompactness...