Сonvex relaxation in multiextremal problems

Abstract

In this paper multiextremal problems in a finite-dimensional Euclidean space are considered. Such problems arise in the mathematical modeling of complex systems in the economy, finance, management, technological processes, transport, design, computer science and other fields. It is known that this class of problems contains discrete problems, the problems of solving nonlinear equations and other applied problems To solve multiextremal problems branch and boundary methods, semidefinite programming, duality methods, genetic and evolutionary methods, and many others are used nowadays. These methods are used to solve applied problems and to solve numerous test problems. Numerous experiments show that only for some test problems the existing methods allow finding optimal solutions. These methods, however, do not guarantee the best solutions in applied problems. Convex relaxation of multiextremal problems allows one to transform them to convex one-extremal problems. For some multiextremal problems such a transformation will be exact. For semi-definite optimization, this will be when the found matrix has rank one. For dual relaxation, it will happen when the duality gap is zero. In the general case, convex relaxation allows one to obtain only an estimate of the optimal solution. Various types of convex relaxation are used: semidefinite, Lagrange duality, exact quadratic regularization, reformulation-linearization technique. The most effective method of convex relaxation is the exact quadratic regularization. With its use, we obtain the widest class of multiextremal problems, for which convex relaxation will be exact. This is achieved by transformation of the original problem and displacement of the space. The efficiency of exact quadratic regularization is confirmed by numerous experiments for solving testing and applied multiextremal problems.

Authors and Affiliations

А. И. Косолап

Keywords

Related Articles

Алгоритм получения учебных образцов для нейронной сети при решении задач долговечности корродирующих конструкций

При решении задач прогнозирования долговечности корродирующих конструкций предлагается использовать технологии вычислительного интеллекта, в частности искусственные нейронные сети. Выделяют определённые необходимые этапы...

The calculating the characteristics of vapor-liquid feed at the mobile control of rectification processes

The paper presents mathematical and algorithmic bases for calculating the static characteristics of the multicomponent rectification process, taking into account the mobile control actions of different intensity. Since m...

Гнучка виробничо-логістична система: модель управління складом з дефіцитом

Сучасні умови функціонування підприємств в рамках ринкової економіки, а також в умовах невизначеності та нестійкості зовнішнього середовища вимагають нових, високо ефективних засобів та методів управління його господарсь...

Use of neural networks in optimization methods for corroding plane stressed plates

The adaptation of the flexible tolerance method to the problems of optimal design of corroding plane stressed plates is proposed with a limitation on the given durability (the operating time up to the moment of exhaustio...

Разработка критериев выбора рациональной калибровки бандажей валковых прессов

Показана актуальность и пути формирования научно-обоснованного метода определения рациональной калибровки валков брикетных прессов на основе анализа связей между параметрами калибровки бандажей и характеристиками процесс...

Download PDF file
  • EP ID EP626345
  • DOI -
  • Views 130
  • Downloads 0

How To Cite

А. И. Косолап (2018). Сonvex relaxation in multiextremal problems. Комп’ютерне моделювання: аналіз, управління, оптимізація, 1(1), 26-34. https://europub.co.uk/articles/-A-626345