Species and Gender Differences Affect the Metabolism of Emodin via Glucuronidation
Journal Title: The AAPS Journal - Year 2010, Vol 12, Issue 3
Abstract
The aim of the present study was to define the mechanisms responsible for poor bioavailability of emodin by determining its metabolism using in vitro and in situ disposition models of the intestine and liver. Liver microsomes of mice, rats, guinea pigs, dogs, and humans were used along with the rat intestinal perfusion model and the rat intestinal microsomes. In the rat intestine, excretion rates of emodin-3-O-glucuronide were significantly different (p < 0.05) in four regions of the intestine and were higher in males than in females (p < 0.01). Emodin glucuronidation in liver microsomes was species-dependent, and Km values varied 5.7-fold (3.2–18.2 μM) in males and 2.8-fold (4.6–13.0 μM) in females. The male intrinsic clearance (CLint) values differed by 5-fold (27.6–138.3 mL h−1 mg−1 protein), and female CLint values differed by 4.3-fold (24.3–103.5 mL h−1 mg−1 protein). Since CLint values of emodin glucuronidation were 10-fold higher than that of isoflavones, emodin was considered rapidly glucuronidated. In contrast to the large species-dependent effects on Km and CLint values, gender had a smaller effect on these kinetic parameters (2-fold, p < 0.05). Lastly, glucuronidation rates obtained using liver microsomes from various experimental animals of the same gender correlated well with those in human liver microsomes. In conclusion, Rapid metabolism by UDP-glucuronosyltransferase is the major reason why emodin has poor bioavailability. Species and gender affected emodin metabolism to a different degree, and experimental animals are expected to be useful in predicting emodin glucuronidation in humans.
Authors and Affiliations
Wei Liu, Lan Tang, Ling Ye, Zheng Cai, Bijun Xia, Jiajie Zhang, Ming Hu, Zhongqiu Liu
Small-molecule agonists and antagonists of the opioid receptor-like receptor (ORL1, NOP): Ligand-based analysis of structural factors influencing intrinsic activity at NOP
The recently discovered fourth member of the opioid receptor family, the nociceptin receptor (NOP) and its endogenous ligand, the heptadecaptide nociceptin, are involved in several central nervous system pathways, such a...
Nonlinear Mixed-Effect Models for Prostate-Specific Antigen Kinetics and Link with Survival in the Context of Metastatic Prostate Cancer: a Comparison by Simulation of Two-Stage and Joint Approaches
The online version of this article (doi:10.1208/s12248-015-9745-5) contains supplementary material, which is available to authorized users.
Protective Effects of Kaempferol on Isoniazid- and Rifampicin-Induced Hepatotoxicity
The online version of this article (doi:10.1208/s12248-013-9490-6) contains supplementary material, which is available to authorized users.
A short-term (accelerated release) approach to evaluate peptide release from PLGA depot formulations
An accelerated method to evaluate peptide release from poly(dl-lactide-co-glycolide) (PLGA) depot formulations in short time is described. Peptide-loaded microspheres were made from hydrophilic 50∶50 PLGA by a di...
Vectors for airway gene delivery
Delivery of genes to the airway epithelium for therapeutic purposes seemed easy at first, because the epithelial cells interface with the environment and are therefore accessible. However, problems encountered were more...