Stochastic Cell Fate and Longevity of Offspring
Journal Title: Cell Journal(Yakhteh) - Year 2017, Vol 19, Issue 3
Abstract
Objective: Cellular decision-making is a key process in which cells with similar genetic and environmental background make dissimilar decisions. This stochastic process, which happens in prokaryotic and eukaryotic cells including stem cells, causes cellular diversity and phenotypic variation. In addition, fitness predicts and describes changes in the genetic composition of populations throughout the evolutionary history. Fitness may thus be defined as the ability to adapt and produce surviving offspring. Here, we present a mathematical model to predict the fitness of a cell and to address the fundamental issue of phenotypic variation. We study a basic decision-making scenario where a bacteriophage lambda reproduces in E. coli, using both the lytic and the lysogenic pathways. In the lytic pathway, the bacteriophage replicates itself within the host bacterium. This fast replication overcrowds and in turn destroys the host bacterium. In the lysogenic pathway, however, the bacteriophage inserts its DNA into the host genome, and is replicated simultaneously with the host genome. Materials and Methods: In this prospective study, a mathematical predictive model was developed to estimate fitness as an index of survived offspring. We then leverage experimental data to validate the predictive power of our proposed model. A mathematical model based on game theory was also generated to elucidate a rationale behind cell decision. Results: Our findings indicate that a rational decision that is aimed to maximize life expectancy of offspring is almost identical to bacteriophage behavior reported based on experimental data. The results also showed that stochastic decision on cell fate maximizes the expected number of survived offspring. Conclusion: We present a mathematical framework for analyzing a basic phenotypic variation problem and explain how bacteriophages maximize offspring longevity based on this model. We also introduce a mathematical benchmark for other investigations of phenotypic variation that exists in eukaryotes including stem cell differentiation.
Authors and Affiliations
Faezeh Dorri, Hamid Pezeshk, Mehdi Sadeghi
High-Level Expression, Purification and Characterization of A Recombinant Plasmodium vivax Apical Membrane Antigen 1: Implication for vivax Malaria Vaccine Development
Objective: The apical membrane antigen-1 (AMA-1) is considered as a promising candidate for development of a malaria vaccine against Plasmodium parasites. The correct conformation of this protein appears to be necessary...
Administration of Selenium Decreases Lipid Peroxidation and Increases Vascular Endothelial Growth Factor in Streptozotocin Induced Diabetes Mellitus
Objective: The imbalance in oxidant/antioxidant status plays a pivotal role in diabetes mellitus (DM). Selenium is a integral component of the antioxidant enzyme glutathione peroxidase. Se treatment induces angiogenesis...
Satellite Cells Contribution to Exercise Mediated Muscle Hypertrophy and Repair
Satellite cells (SCs) are the most abundant skeletal muscle stem cells. They are widely recognized for their contributions to maintenance of muscle mass, regeneration and hypertrophy during the human life span. These cel...
The Effect of Mir-451 Upregulation on Erythroid Lineage Differentiation of Murine Embryonic Stem Cells
Objective MicroRNAs (miRNAs) are small endogenous non-coding regulatory RNAs that control mRNAs post-transcriptionally. Several mouse stem cells miRNAs are cloned differentially regulated in different hematopoietic linea...
Preparation and Evaluation of A Novel Liposomal Nano-Formulation in Metastatic Cancer Treatment Studies
Objective: Today, in clinical trials, we suffer from the lack of effective methods with minimal side effects to deliver medication. Thus, efforts to identify better conditions for delivery of biomedical drugs seem necess...