Structure-Activity relationship in mutated pyrazinamidases from Mycobacterium tuberculosis.
Journal Title: Bioinformation - Year 2011, Vol 6, Issue 9
Abstract
The pncA gene codes the pyrazinamidase of Mycobacterium tuberculosis, which converts pyrazinamide to ammonia and pyrazinoic-acid, the active antituberculous compound. Pyrazinamidase mutations are associated to pyrazinamide-resistant phenotype, however how mutations affect the structure of the pyrazinamidase, and how structural changes affect the enzymatic function and the level of pyrazinamide-resistance is unknown. The structures of mutated pyrazinamidases from twelve Mycobacterium tuberculosis strains and the pyrazinamide-susceptible H37Rv reference strain were modelled using homology modelling and single amino acid replacement. Physical-chemical and structural parameters of each pyrazinamidase were calculated. These parameters were: The change of electrical charge of the mutated amino acid, the change of volume of the mutated amino acid, the change of a special amino acid, the distance of the mutated amino acid to the active site, the distance of the mutated amino acid to the metal-coordination site, and the orientation of the side-chain of the mutated amino acid. The variability of the enzymatic activity of the recombinant pyrazinamidases, and the microbiological susceptibility to pyrazinamide determined by BACTEC 460TB, were modelled in multiple linear regressions. Physical-chemical and structural parameters of the mutated pyrazinamidases were tested as predictors. Structural and physical-chemical variations of the pyrazinamidase explained 75% of the variability of the enzymatic activity, 87% of the variability of the kinetic constant and 40% of the variability of the pyrazinamide-resistance level. Based on computer models of mutated pyrazinamidases, the structural parameters explained a high variability of the enzymatic function, and to a lesser extent the resistance level.
Insights from molecular modeling and dynamics simulation of pathogen resistance (R) protein from brinjal.
Resistance (R) protein recognizes molecular signature of pathogen infection and activates downstream hypersensitive response signalling in plants. R protein works as a molecular switch for pathogen defence signalling and...
Evaluation of data integration strategies based on kernel method of clinical and microarray data
The cancer classification problem is one of the most challenging problems in bioinformatics. The data provided by Netherland Cancer Institute consists of 295 breast cancer patient; 101 patients are with distant metastase...
Insights from the molecular docking of withanolide derivatives to the target protein PknG from Mycobacterium tuberculosis.
A crucial virulence factor for intracellular Mycobacterium tuberculosis survival is Protein kinase G (PknG), a eukaryotic-like serinethreonine protein kinase expressed by pathogenic mycobacteria that blocks the intracell...
sRNATarget: a web server for prediction of bacterial sRNA targets.
In bacteria, there exist some small non-coding RNAs (sRNAs) with 40-500 nucleotides in length. Most of them function as posttranscriptional regulation of gene expression through binding to their target mRNAs, in which Hf...
Modeling of pyruvate decarboxylases from ethanol producing bacteria.
Pyruvate decarboxylase (PDC) is a key enzyme in homoethanol fermentation process, which decarboxylates 2-keto acid pyruvate into acetaldehyde and carbon dioxide. PDC enzymes from potential ethanol-producing bacteria such...