Study the Response of Physiological Traits and Grain Yield to Integrated Use of Chemical Nitrogen Fertilizer with Sugarcane Residue Compost in Heat Stress Conditions
Journal Title: Iranian Journal of Field Crops Research - Year 2023, Vol 21, Issue 3
Abstract
IntroductionIn the pursuit of a resilient and progressive agricultural system, the incorporation of diverse fertilizers is deemed essential. This practice not only enhances product quality but also aids in cost reduction. However, over-reliance on a specific type of input can inadvertently lead to unintended repercussions. The unrestricted utilization of chemical fertilizers, for instance, can precipitate adverse outcomes such as imbalanced pH levels, the accumulation of heavy elements, soil structure deterioration, and environmental contamination. Conversely, organic fertilizers, while environmentally friendly, often release nutrients at a slower rate, potentially disrupting optimal plant growth. To attain a balanced and sustainable agricultural approach, the combined application of organic and chemical fertilizers is advocated. Moreover, harnessing the biological potential inherent in soil ecosystems, including beneficial microbial communities encompassing bacteria and fungi, emerges as a promising avenue in cultivating sustainable agriculture. Acknowledging the adverse impact of late-season heat stress on wheat production in Khuzestan and recognizing the significance of reducing chemical fertilizer usage while augmenting organic and biological fertilizers to foster ecological health, this experiment undertakes the exploration of the effects of a synergistic approach. Specifically, it delves into the combined utilization of nitrogen and compost fertilizers, complemented by the incorporation of plant growth-promoting rhizobacteria. This endeavor aims to shed light on how this combined strategy operates within the context of terminal heat stress, assessing its influence on the physiological attributes and yield of the wheat cultivar Chamran 2.Materials and MethodsThis experiment was carried out as split-split plots based on a randomized complete block design with three replications in the crop year of 2021-2022 in the research farm of Agricultural Sciences and Natural Resources University of Khuzestan. The experimental factors include three planting dates: December 1st, December 20th, and December 10th in the main plots; Six levels of combined use of nitrogen fertilizer with compost fertilizer include control (without nitrogen and organic), 100% nitrogen, 75% nitrogen+ 25% compost, 50% nitrogen+ 50% compost, 25% nitrogen+ 75% compost and 100% compost in sub-plots and two levels of application and non-application of plant growth promoting rhizobacteria in sub-plots. Each sub-plot was 3 meters long and 2 meters wide (with an area of 6 square meters) and included 10 crop lines at a distance of 20 cm from each other. The distance between the main and secondary plots was considered to be half a meter and the distance between the blocks was two meters. After physiological maturity, the plants were harvested and the physiological traits and grain yield were measured.Results and DiscussionVariance analysis showed that the interaction effect of planting date, combined use of nitrogen with compost, and plant growth promoting rhizobacteria, on the traits of relative leaf water content, planting to flowering, and grain yield were significant at the 1% probability level. Also, the interaction effect of planting date and the combined use of nitrogen with compost on all traits except the length of the grain filling period and the length of sowing to physiological maturity was significant at the probability level of 1%. The mean comparison showed that the highest relative leaf water content, cell membrane thermostability, and canopy temperature depression were obtained from the treatment of 100% compost, and the highest traits of the length of sowing to flowering and length of sowing to physiological maturity were obtained in the use of 100% nitrogen. Also, the longest grain filling period, grain filling rate, and grain yield were obtained in the combined use of 50% nitrogen+ 50% compost and plant growth-promoting rhizobacteria, and the lowest value was obtained in the control of not using nitrogen and compost. In general, the delay in planting and the occurrence of terminal heat stress caused a decrease in grain yield, but on different planting dates, the combined use of 50% nitrogen+ 50% compost compared to the treatment of 100% nitrogen increased wheat grain yield.ConclusionAccording to the obtained results, in areas with terminal heat stress, the combined use of 50% nitrogen+ 50% compost and plant growth-promoting rhizobacteria can be considered to increase the growth and yield of wheat.
Authors and Affiliations
M Makvandi,A Bakhshandeh,A Moshatati,M. R Moradi Telavat,A Khodaei joghan,
Effect of Application of Plant Growth Promoting Bacteria and Amino Acids Foliar Application on Growth Characteristics, Yield, and Nutritional Value of Rice (Oryza sativa L.)
Introduction Rice (Oryza sativa L.), as one of the most important cereals, is the main food of more than 50% of the world's population. Excessive use of chemical fertilizers in paddy fields has caused many environmental...
Investigating the Changes of Some Agronomic and Biochemical Characteristics of Thymus vulgaris L. with Application of Mycorrhizal Species and Foliar Spraying Humic Acid
IntroductionGarden thyme (Thymus vulgaris L.), is a small perennial plant native to the Mediterranean region that is now found worldwide. It is commonly used as a culinary herb and for medicinal purposes as well (Silva e...
Effect of Planting Pattern and Weed Management on the Yield and Yield Components of Two Peanuts Cultivars in the Climatic Conditions of Kermanshah
IntroductionPeanuts (Arachis hypogaea L.) possess significant commercial and nutritional value (Gulluoglu, Bakal, Bihter, Cemal, & Arioglu, 2016). However, this plant is highly susceptible to weed competition due to...
Response of Sweet Basil (Ocimum bacilicum L.) to Different Nutritional Sources in Competition with Weeds
IntroductionIt is well accepted that application of chemical fertilizers contaminates the water and soil resources and reduces the quality of agricultural and medicinal products, which subsequently creates serious enviro...
Investigation the Response of Wheat (Triticum aestivum L.) Grain Yield to Foliar Application of Azospirillum, Zn and 6-Banzylaminopurine
IntroductionMany millions of hectares of wheat-cultivated lands are located in semi-arid areas, and cereal crops such as wheat grown under such conditions frequently face drought events during their life cycle. A conside...