Study the Response of Physiological Traits and Grain Yield to Integrated Use of Chemical Nitrogen Fertilizer with Sugarcane Residue Compost in Heat Stress Conditions

Journal Title: Iranian Journal of Field Crops Research - Year 2023, Vol 21, Issue 3

Abstract

IntroductionIn the pursuit of a resilient and progressive agricultural system, the incorporation of diverse fertilizers is deemed essential. This practice not only enhances product quality but also aids in cost reduction. However, over-reliance on a specific type of input can inadvertently lead to unintended repercussions. The unrestricted utilization of chemical fertilizers, for instance, can precipitate adverse outcomes such as imbalanced pH levels, the accumulation of heavy elements, soil structure deterioration, and environmental contamination. Conversely, organic fertilizers, while environmentally friendly, often release nutrients at a slower rate, potentially disrupting optimal plant growth. To attain a balanced and sustainable agricultural approach, the combined application of organic and chemical fertilizers is advocated. Moreover, harnessing the biological potential inherent in soil ecosystems, including beneficial microbial communities encompassing bacteria and fungi, emerges as a promising avenue in cultivating sustainable agriculture. Acknowledging the adverse impact of late-season heat stress on wheat production in Khuzestan and recognizing the significance of reducing chemical fertilizer usage while augmenting organic and biological fertilizers to foster ecological health, this experiment undertakes the exploration of the effects of a synergistic approach. Specifically, it delves into the combined utilization of nitrogen and compost fertilizers, complemented by the incorporation of plant growth-promoting rhizobacteria. This endeavor aims to shed light on how this combined strategy operates within the context of terminal heat stress, assessing its influence on the physiological attributes and yield of the wheat cultivar Chamran 2.Materials and MethodsThis experiment was carried out as split-split plots based on a randomized complete block design with three replications in the crop year of 2021-2022 in the research farm of Agricultural Sciences and Natural Resources University of Khuzestan. The experimental factors include three planting dates: December 1st, December 20th, and December 10th in the main plots; Six levels of combined use of nitrogen fertilizer with compost fertilizer include control (without nitrogen and organic), 100% nitrogen, 75% nitrogen+ 25% compost, 50% nitrogen+ 50% compost, 25% nitrogen+ 75% compost and 100% compost in sub-plots and two levels of application and non-application of plant growth promoting rhizobacteria in sub-plots. Each sub-plot was 3 meters long and 2 meters wide (with an area of 6 square meters) and included 10 crop lines at a distance of 20 cm from each other. The distance between the main and secondary plots was considered to be half a meter and the distance between the blocks was two meters. After physiological maturity, the plants were harvested and the physiological traits and grain yield were measured.Results and DiscussionVariance analysis showed that the interaction effect of planting date, combined use of nitrogen with compost, and plant growth promoting rhizobacteria, on the traits of relative leaf water content, planting to flowering, and grain yield were significant at the 1% probability level. Also, the interaction effect of planting date and the combined use of nitrogen with compost on all traits except the length of the grain filling period and the length of sowing to physiological maturity was significant at the probability level of 1%. The mean comparison showed that the highest relative leaf water content, cell membrane thermostability, and canopy temperature depression were obtained from the treatment of 100% compost, and the highest traits of the length of sowing to flowering and length of sowing to physiological maturity were obtained in the use of 100% nitrogen. Also, the longest grain filling period, grain filling rate, and grain yield were obtained in the combined use of 50% nitrogen+ 50% compost and plant growth-promoting rhizobacteria, and the lowest value was obtained in the control of not using nitrogen and compost. In general, the delay in planting and the occurrence of terminal heat stress caused a decrease in grain yield, but on different planting dates, the combined use of 50% nitrogen+ 50% compost compared to the treatment of 100% nitrogen increased wheat grain yield.ConclusionAccording to the obtained results, in areas with terminal heat stress, the combined use of 50% nitrogen+ 50% compost and plant growth-promoting rhizobacteria can be considered to increase the growth and yield of wheat.

Authors and Affiliations

M Makvandi,A Bakhshandeh,A Moshatati,M. R Moradi Telavat,A Khodaei joghan,

Keywords

Related Articles

Effect of Deficit Irrigation on Water Use Efficiency and Tuber Dry Matter of Potato Cultivars

IntroductionPotato ranks the first with respect to the amount of energy production per unit area. It is cultivated in about 19.5 million hectares throughout the world and its annual production is about 375 million tons....

Effect of Salicylic Acid Foliar Application on Physiological Indices and Induction of Terminal Heat Stress Tolerance of Quinoa in Ahvaz

IntroductionQuinoa (Chenopodium quinoa L.) is a dicotyledonous, allotetraploid, three-carbon, annual, optional salt-loving plant and is native to South America and the Andean highlands. The growth period of the plant var...

The Effect of Epibrassinolide Application on Photosynthetic Material Allocation, Drought Tolerance, and Seed Yield of two Pinto Bean Genotypes (Phaseolus vulgaris L.)

Introduction Common bean (Phaseolus vulgaris L.) is a food crop with high protein, fiber, and minerals. One of the important issues in the formation of seed yield is how photosynthetic materials are allocated in plants....

Effect of Iron and Zinc Nano Chelates on Yield and Yield Components of Black Cumin Medicinal Plant (Nigella sativa L.)

Introduction The black seed is scientifically known as Nigella sativa L. from the family Ranunculaceae, which is susceptible to deficiencies in micro elements, including iron and poor soils. The concentration of Fe and Z...

Evaluation of the Effect of Different Irrigation Regimes on the Accumulation of Some Compatible Osmolytes and the Activity of Antioxidant Enzymes in Quinoa

IntroductionThe high nutritional value of quinoa and its ability to grow under adverse environmental conditions have led to an increase in the area under cultivation globally. Quinoa has attracted particular attention in...

Download PDF file
  • EP ID EP720897
  • DOI https://doi.org/10.22067/jcesc.2023.81634.1236
  • Views 66
  • Downloads 0

How To Cite

M Makvandi, A Bakhshandeh, A Moshatati, M. R Moradi Telavat, A Khodaei joghan, (2023). Study the Response of Physiological Traits and Grain Yield to Integrated Use of Chemical Nitrogen Fertilizer with Sugarcane Residue Compost in Heat Stress Conditions. Iranian Journal of Field Crops Research, 21(3), -. https://europub.co.uk/articles/-A-720897