Sublingual Diffusion of Epinephrine Microcrystals from Rapidly Disintegrating Tablets for the Potential First-Aid Treatment of Anaphylaxis: In Vitro and Ex Vivo Study

Journal Title: AAPS PharmSciTech - Year 2015, Vol 16, Issue 5

Abstract

For the first-aid treatment of anaphylaxis, epinephrine (Epi) 0.3 mg intramuscular (IM) injection in the thigh is the drug of choice. Epi auto-injectors are widely recommended for anaphylaxis treatment in community settings but not necessarily carried or used as prescribed when anaphylaxis occurs. We therefore developed rapidly disintegrating sublingual tablets (RDSTs) as an alternative noninvasive dosage form. Our objective in this study was to evaluate the effect of reducing Epi particle size on its in vitro and ex vivo diffusion, with the goal of enhancing Epi sublingual absorption from Epi RDSTs. Epi particle size was reduced by top-bottom technique using a microfluidizer for one pass at 30,000 Psi. The micronized Epi crystals (Epi-MC) were characterized using Zetasizer, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Epi RDSTs were formulated and manufactured using our previously developed method. In vitro and ex vivo diffusion of Epi 10, 20, and 40 mg RDSTs and Epi-MC 10 and 20 mg RDSTs (n = 4) were evaluated using Franz cells. Epi 10 mg solution was used as a control. Mean (±standard deviation (SD)) Epi particle size was successfully reduced from 131.8 ± 10.5 to 2.5 ± 0.4 μm. Cumulative Epi diffused and influx from 40 mg Epi RDSTs and 20 mg Epi-MC RDSTs were not significantly different from each other in vitro and ex vivo (p > 0.05). Also, Epi permeability from 20 mg Epi-MC RDSTs was significantly higher than from the rest (p < 0.05). Epi-MC RDSTs improved Epi diffusion twofold and might have the potential to reduce the Epi dose needed in RDSTs by 50%.

Authors and Affiliations

Mutasem M. Rawas-Qalaji, Shima Werdy, Ousama Rachid, F. Estelle R. Simons, Keith J. Simons

Keywords

Related Articles

The Role of Caprylate Ligand Ion on the Stabilization of Human Serum Albumin

Sodium caprylate was added to a pharmaceutical-grade human serum albumin (HSA) to stabilize the product. In this study we have aimed to establish how caprylate ligand protects HSA from thermal degradation. The fatty acid...

The Influence of Secondary Processing on the Structural Relaxation Dynamics of Fluticasone Propionate

The online version of this article (doi:10.1208/s12249-014-0222-8) contains supplementary material, which is available to authorized users.

Erratum to: Evaluation of Tadalafil Nanosuspensions and Their PEG Solid Dispersion Matrices for Enhancing Its Dissolution Properties

The online version of the original article can be found at 10.1208/s12249-013-0070-y.

Finite Element Method (FEM) Modeling of Freeze-drying: Monitoring Pharmaceutical Product Robustness During Lyophilization

Lyophilization is an approach commonly undertaken to formulate drugs that are unstable to be commercialized as ready to use (RTU) solutions. One of the important aspects of commercializing a lyophilized product is to tra...

Topical Formulations Containing Pimenta pseudocaryophyllus Extract: In Vitro Antioxidant Activity and In Vivo Efficacy Against UV-B-Induced Oxidative Stress

Pimenta pseudocaryophyllus is a Brazilian native plant that presents high concentrations of flavonoids and other polyphenolic compounds. Herein, we evaluated: (1) the chemical properties of P. pseudocaryophyllus ethanoli...

Download PDF file
  • EP ID EP682316
  • DOI  10.1208/s12249-015-0306-0
  • Views 73
  • Downloads 0

How To Cite

Mutasem M. Rawas-Qalaji, Shima Werdy, Ousama Rachid, F. Estelle R. Simons, Keith J. Simons (2015). Sublingual Diffusion of Epinephrine Microcrystals from Rapidly Disintegrating Tablets for the Potential First-Aid Treatment of Anaphylaxis: In Vitro and Ex Vivo Study. AAPS PharmSciTech, 16(5), -. https://europub.co.uk/articles/-A-682316