SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal

Abstract

Sleep apnea (SA) is the most commonly known sleeping disorder characterized by pauses of airflow to the lungs and often results in day and night time symptoms such as impaired concentration, depression, memory loss, snoring, nocturnal arousals, sweating and restless sleep. Obstructive Sleep Apnea (OSA), the most common SA, is a result of a collapsed upper respiratory airway, which is majorly undiagnosed due to the inconvenient Polysomnography (PSG) testing procedure at sleep labs. This paper introduces an automated approach towards identifying sleep apnea. The idea is based on efficient feature extraction of the electrocardiogram (ECG) signal by employing a hybrid of signal processing techniques and classification using a linear-kernel Support Vector Machine (SVM). The optimum set of RR-interval features of the ECG signal yields a high classification accuracy of 97.1% when tested on the Physionet Apnea-ECG recordings. The results provide motivating insights towards future developments of convenient and effective OSA screening setups.

Authors and Affiliations

Laiali Almazaydeh| Department of Software Engineering, Al Hussein Bin Talal University, Jordan, Khaled Elleithy| Department of Computer Science and Engineering, University of Bridgeport, CT 06604, USA, Miad Faezipour| Department of Computer Science and Engineering, University of Bridgeport, CT 06604, USA, Helen Ocbagabir| Department of Computer Science and Engineering, University of Bridgeport, CT 06604, USA

Keywords

Related Articles

An Efficient Approach for Ground Echoes Suppression Based on Textural Features and SVM

The use of the Support Vector Machine (SVM) technique for the clutter identification in the context of meteorological data is presented. The clutter is due to ground echoes and anomalous propagation. The SVM is combined...

Dependability Assessment of the Railway Signalling Systems Based on the Stochastic Petri Nets Analysis

In this article, we propose a methodology to evaluate the performances of the railway signalling systems in terms of the availability. Firstly, level crossings in Morocco are presented. Secondly, a railway signalling sys...

Process modelling and simulation of a Simple Water Treatment Plant

Water treatment plants are likely to experience problems such as the water level both in the filter cells and in the tanks tend to fluctuate widely. These create the potential for partial drainage, overflow, and potentia...

GA Based Selective Harmonic Elimination for Five-Level Inverter Using Cascaded H-bridge Modules

Multilevel inverters (MLI) have been commonly used in industry especially to get quality output voltage in terms of total harmonic distortion (THD). In addition, development in semiconductor technology and advanced modul...

Design and Implementation of High Speed Artificial Neural Network Based Sprott 94 S System on FPGA

FPGA-based embedding system designs have been preferred for industrial applications and prototyping because of the advantages of parallel processing, reconfigurability and low cost. Due to having characteristic structure...

Download PDF file
  • EP ID EP789
  • DOI 10.18201/ijisae.79075
  • Views 525
  • Downloads 21

How To Cite

Laiali Almazaydeh, Khaled Elleithy, Miad Faezipour, Helen Ocbagabir (2016). SVM-Based Sleep Apnea Identification Using Optimal RR-Interval Features of the ECG Signal. International Journal of Intelligent Systems and Applications in Engineering, 4(1), 1-4. https://europub.co.uk/articles/-A-789