Temperature, Humidity and Energy Consumption Forecasting in the Poultry Hall Using Artificial Neural Networknetwork
Journal Title: Journal of Agricultural Machinery - Year 2017, Vol 7, Issue 2
Abstract
Introduction Energy consumption management is one of the most important issues in poultry halls management. Considering the situation of poultry as one of the largest and most developed industries, it is needed to control growing condition based on world standards. The neural networks as one of the intelligent methods are applied in a lot of fields such as classification, pattern recognition, prediction and modeling of processes. To detect and classify several agricultural crops, a research was conducted based on texture and color feature. The highest classification accuracy for vegetables, grains and fruits with using artificial neural network were 80%, 86% and 70%. In this research, the ability to Multilayer Perceptron (MLP) Neural Network in predicting energy consumption, temperature and humidity in different coordinate placement of electronic control unit sensors in the poultry house environment was examined. Materials and Methods The experiments were conducted in a poultry unit (3000 pieces) that is located in Fars province, Marvdasht city, Ramjerd town, with dimensions of 32 meters long, 7 meters wide and 2.2 meters height. To determine the appropriate placement of the sensor, 60 different points in terms of length, width and height in poultry were selected. Initially, the data was divided into two datasets. 80 percent of total data as a training set and 20 percent of total data as a test set. From180 observations, 144 data were used to train network and 36 data were used to test the process. There are several criteria for evaluating predictive models that they are mainly based according to the difference between the predicted outputs and actual outputs. To evaluate the performance of the model, two statistical indexes, mean squared error (MSE) and the coefficient of determination (R²) were used. Results and Discussions In this study, to train artificial neural network for predicting the temperature, humidity and energy consumption, the trainlm algorithm (Levenberg-Marquardt) was used. To simulate temperature, humidity and energy consumption, networks were trained with two and three layers, respectively. Network with two layers with10 neurons in the hidden layer and one neuron in the output layer with (R²) equal to 0.96 and (MSE) equal to 0.00912, was given the best result for predicting temperature. For humidity electronic sensors, results showed that network with three layers with the 10 neurons in the first hidden layer, 20 neurons in the second hidden layer and one neuron in the output layer with (R²) equal to 0.8 and (MSE) equal to 0.00783 was the best for predicting humidity. Finally, network with two layers with 10 neurons in the first hidden layer, 10 neurons in the second hidden layer and one neuron in the output layer was selected as the optimal structure for predicting energy consumption. For this topology, (R²) and MSE were determined to 0.98 and 0.00114, respectively. Linear and multivariate regression for the parameters affecting temperature, humidity and energy consumption of electronic sensors was determined by the STATGR software. Correlation coefficients indicated that parameters such as length, height and width of the electronic control sensors placed in the poultry hall justified 82% of the temperature changes, 61% of the humidity changes and 92% of the energy consumption changes. Therefore, comparing with correlation coefficients obtained from the neural network models, the highest correlation coefficient was related to energy parameter and the lowest correlation was linked to humidity parameter. Conclusion The results of the study indicated the high performance for predicting temperature, humidity and energy consumption. The networks hadthree inputs including length, width and height of electronic sensor positions and an output for temperature, humidity and energy consumption. For training networks the multiple layer perceptron (MLP) with error back propagation learning algorithm (BP) was used. Functions activity for all networks in hidden layers were tangentsigmoid and in the output layer, linear (purelin). Comparing the results of artificial neural network and logistic regression model showed that artificial neural network model with correlation coefficients of 0.98 (energy), 0.96 (temperature) and 0.8 (humidity) provided closer data to the actual data compared with regression models with correlation coefficients of 0.92, 0.82 and 0.61 for the energy, temperature and humidity respectively.
Authors and Affiliations
N. Gholamrezaei,K. Qaderi,K. Jafari Naeimi,
Prioritization and Evaluation of Mechanical Components Failure of CNC Lathe Machine based on Fuzzy FMEA Approach
Introduction In recent years, with development of industrial products with complex and precise systems, the demand for CNC machines has been increasing, and as its technology has been progressed, more failure modes have...
Non-destructive prediction of apple firmness during storage based on dynamic speckle patterns
Introduction In recent years, the determination of firmness as an important quality attribute of apple fruits has been widely noticed. Common methods for firmness measurement are destructive and cannot be applied in sort...
Feasibility of Drone Imagery for Monitoring Performance of a Modified Drill in a Conservation Farming System
In this paper, performance of a no-till corn planter in a soil covered with previous wheat residue was evaluated. Three levels of crop residue cover (CRC): 30, 45 and 60%, two planting schemes; on-bed and in-furrow and t...
Development of a Grapevine Pruning Algorithm for Using in Pruning
Introduction Great areas of the orchards in the world are dedicated to cultivation of the grapevine. Normally grape vineyards are pruned twice a year. Among the operations of grape production, winter pruning of the bushe...
Comparison of biogas production from rapeseed and wheat residues in compound with cattle manure
Introduction Seventy million tons of agricultural crops are produced from 18 million hectares of agricultural lands in Iran every year. Since 80% of the crops (wt. basis) ends up as residues, therefore, about 50 million...