The Effect of Seed Inoculation with Funneliformis mossea Mycorrhiza on Some Morphophysiological and Biochemical Traits of Barley (Hordeum vulgare L.) Under Salinity Stress Conditions

Journal Title: Journal of Agroecology - Year 2024, Vol 16, Issue 1

Abstract

Introduction Barley is the fourth most important cereal in the world and is considered one of the least expected crops that has adapted and distributed globally due to its resistance to salinity. The growing world's population has expanded the cultivated domain, which caused the utilization of extravagant chemical fertilizers in modern agricultural cropping systems. This approach has not been cost-effective and has caused severe environmental damages like contaminating the underground water and creating unusual salinity in the fields. Therefore, it seems to be essential to replace risky approaches with eco-friendlier methods. In addition, with increasing environmental stress as a result of climate warming, we need to understand better ways to reduce environmental stress for the sustainable production of barley. Mycorrhiza has been introduced as an essential portion of agricultural ecosystems because of its positive effect on the soil texture, growth, and productivity of almost all host plants. This trend is attributed to reduced chemical fertilizer demands. Mycorrhiza enhances the water relations under stress conditions, water and nutrient uptake by augmenting the hyphae network. In this study we aimed to investigate the role of mycorrhizal inoculation in alleviating the detrimental effects of salinity stress on barley. Our hypotheses were: (i) mycorrhizal inoculation can alleviate the detrimental effect of stress at low to medium levels but not at high levels of salinity, and (ii) there is an interaction effect of low levels of salinity and arbuscular mycorrhizal symbiosis lead to higher the performance of barley. Materials and Methods In order to evaluate the effects of Funneliformis mosseae mycorrhiza on morphological, biochemical and yield of barley, one experiment was conducted in research farm of School of Agriculture, Shiraz University. Field experiment was a split-plot in a randomized complete block design with three replications. Factors included salinity levels (0.4, 4, 8 and 12 dS m-1) as the main factor and the mycorrhiza (with and without) was applied as sub factor. Data were analyzed by using SAS 9.2 software and the means were separated using LSD test at 5% probability level. Results and Discussion The results of the experiment showed that salinity decreased yield and vegetation traits, including plant height, number of tillers per plant, number of spikes per plant, number of seeds per spike, 1000-grain weight, grain yield, and biological yield. All the measured traits in plants inoculated with mycorrhizal fungi were higher than the non-mycorrhizal plants. The inoculation of plants in most cases improved the effects of stress; i.e., inoculation under high salinity stress (12 dS m-1) increased SOD by 5.7%, CAT by 8.0%, K concentration by 30.8%, K/Na ratio by 131.1%, plant height by 8.1%, number of spikes per plant by 9.4%, number of grain per spike by 6.6%, 1000-grain weight by 4.2%, grain yield by 20.2%, and biological yield by 11.0% compared with non-inoculation plants. Also, Fayaz and Zahedi (2021) reported that mycorrhizal inoculation could promote the growth and salt tolerance of wheat cultivars by improving osmoregulation and antioxidant enzyme activity and reducing the Na+/K+ ratio. Conclusion In this experiment, inoculation treatment alleviated the high salinity stress (12 dS m-1) effects in most cases and raised the grain yield and K+/Na+ ratio up to 20.2 and 131.1%, respectively, compared with non-inoculation plants. The results from this experiment showed that Funneliformis mosseae fungi inoculation could promote the growth and salt tolerance of barley by improving antioxidant enzyme activity, and ion homeostasis. In summary, the use of Funneliformis mosseae could reduce salinity damages by improving the physiological and biochemical responses of barley. This study highlighted the potential role of Funneliformis mosseae inoculation, in particular with native strains, as an innovative and eco-friendly technology for a sustainable crop-growing system in arid and semi-arid areas.

Authors and Affiliations

Fatemeh Sadat Ghabous,Seyed Abdolreza Kazemeini,Mehdi Zarei,

Keywords

Related Articles

Interaction Effect of Chemical and Bio-Fertilizers and Deficit Irrigation on Yield and Yield Components of Sweet Corn (Zea mays L. Var saccharata) and Some Soil Biological Activity Indices

Introduction Sweet corn (Zea mays L. Var saccharata) is an important cereal crop that refers to considerable human nutrition and industrial products of its sugar content, minerals phosphorus, magnesium, iron, zinc, and...

Study of Environmental Sustainability of Tobacco (Nicotiana tabacum) Cultivation with Ecological Footprint Approach (Case Study: Flue–Cured Tobacco and Air–Cured in Golestan Province)

IntroductionToday, agricultural systems are considered as the center and main axis of all activities related to the development of sustainable agriculture in Iran. Obviously, the more efforts to expand the sustainability...

Evaluation of Yield, Yield Components and Land Equivalent Ratio in replacement intercropping of Fennel (Foeniculum vulgar Mill.) with Mung Bean (Vigna radiata L. Wilczek)

IntroductionIntercropping as an approach for development of sustainable agriculture systems is pursuing the purposes such as creating ecological balance, further exploitation of resources, increase the quantity and quali...

Investigation of Below-Ground Interspecific Interaction in the Intercropping Culture of Soybean (Glycine max (L.) Merrill) and Niger (Guizotia abyssinica Cass.)

IntroductionMost research on intercropping cultivation in the past has focused on seed yield and yield components, and less attention has been paid to below-ground interaction processes. However, the connection of plants...

Improving the Quantitative, Qualitative, and Agronomic Phosphorus Efficiency of Soybean (Glycine max L.)

Introduction One of the most important issues in improving the growth and increasing the yield of oil plants is proper nutrition and providing the nutrients the plant needs during the growing season. Today, using biofe...

Download PDF file
  • EP ID EP738902
  • DOI https://doi.org/10.22067/agry.2022.76917.1115
  • Views 4
  • Downloads 0

How To Cite

Fatemeh Sadat Ghabous, Seyed Abdolreza Kazemeini, Mehdi Zarei, (2024). The Effect of Seed Inoculation with Funneliformis mossea Mycorrhiza on Some Morphophysiological and Biochemical Traits of Barley (Hordeum vulgare L.) Under Salinity Stress Conditions. Journal of Agroecology, 16(1), -. https://europub.co.uk/articles/-A-738902