The impact of nozzle configuration on the heat transfer coefficient

Journal Title: Archives of Materials Science and Engineering - Year 2018, Vol 1, Issue 90

Abstract

Purpose: The purpose of this paper is to elaborate guidelines regarding geometric configurations of a nozzle manifold that have an impact on the effectiveness of the quenching process and occurrence of quenching distortions. Design/methodology/approach: Within the framework of this study there an optimisation of nozzle manifold geometry was carried out with the help of numerical simulations created using Ansys CFX software. In the first stage, a simplification of the nozzle-sample system reduced to a two-dimensional simulation was employed to determine the most optimal location of the coolant stream. In the second stage, several arrangements of nozzle manifolds were tested in a three-dimensional simulation. The parameters that were taken into account included the rate of sample cooling, the uniformity of cooling with a sample volume and heat coefficient takeover read from its surface. Findings: The different active/inactive nozzle arrangements within the manifold and the impact of the specific arrangements on the uniformity of heat transfer from the sample surface were compared. Research limitations/implications: The simulations carried out within the framework of this study are one of the elaboration stages of a new flow heat treatment technology. Practical implications: The application of an efficient cooling chamber in flow treatment makes it possible to limit quenching distortions to a minimum. An optimal adjustment of cooling parameters and cooling nozzle configuration to the shape of the element in order to make the cooling uniform translate directly into a reduction in distortions. Avoiding the necessity to reduce distortions after quenching means there is a significant reduction in detail production costs (grinding). Originality/value: The concept of single-piece flow in the heat treatment for the mass industry is developing rapidly and constitutes a fully automated element of a manufacturing line, adjusted for the purposes of being included in the production process automatic control system. It also makes it possible to conduct comprehensive and integration quality supervision and management at the level of an individual element, which is not possible in the case of batch heat treatment, which is a gap in the production process.<br/><br/>

Authors and Affiliations

K. Krupanek, A. Staszczyk, J. Sawicki, P. Byczkowska

Keywords

Related Articles

Modelling of stresses and strains in two-layer combined materials at their formation

Purpose: The aim of the represented study was to model the behaviour of two-layer combined material during its manufacturing. Design/methodology/approach: The model of material layers joining by mea...

Ultrasonic method of quality control for textile materials

Purpose: The ultrasonic amplitude method for controlling the surface texture density of textile materials was first studied and used. Design/methodology/approach: For the first time, the surface texture density has been...

Effect of plastic deformation rate at room temperature on structure and mechanical properties of high-Mn austenitic Mn-Al-Si 25-3-3 type steel

Purpose: The aim of the paper is to determine influence of plastic deformation rate at room temperature on structure and mechanical properties of high-Mn austenitic Mn-Al-Si 25-3-3 type steel tested at room temperature....

NiO nanoparticles prepared by the sol-gel method for a dye sensitized solar cell applications

Purpose: The purpose of this article is to synthesized NiO nanostructures by sol-gel method and characterized them for use in dye sensitized solar cells. For this purpose, a paste prepared from nanoparticles was prepared...

Neural networks model for prediction of the hardness of steels cooled from the austenitizing temperature

Purpose: The paper presents the new neural networks model making it possible to estimate the hardness of continuously-cooled steel from the austenitizing temperature.Design/methodology/approach: The method proposed i...

Download PDF file
  • EP ID EP346387
  • DOI 10.5604/01.3001.0012.0609
  • Views 87
  • Downloads 0

How To Cite

K. Krupanek, A. Staszczyk, J. Sawicki, P. Byczkowska (2018). The impact of nozzle configuration on the heat transfer coefficient. Archives of Materials Science and Engineering, 1(90), 16-24. https://europub.co.uk/articles/-A-346387