The influence of chemical composition of nanofluids on dimensional changes of hardened constructional steel

Abstract

Purpose: The possibility definition of utilization of the quenching from the nanofluids group is to the hardened of elements created from constructional steels. The definition of influence size of nanofluids on the dimension changes of the element created from low carbon constructional steel is also the important aspect of this work. Design/methodology/approach: Methodology used during investigations enclosed two areas. First area enclosed the investigation of quenching mediums propriety in the support about the English method, which permitted estimate of their warmth receipt ability in the support about cooling curved in the arrangement the temperature – the time or the cooling speed. Second area enclosed the investigations of the hardened element which let define dimension changes and hardness on the transverse section. The formed structure was also estimated on the cross section in the support about the light microscope. Findings: of this article is show the possibility obtainment of minimum dimension changes the element of the cooled in nanofluids near the retained of hardness and structure on the level which was got in the quenching mediums until now used for the studied material. The summery up the use of quenching mediums of the nanofluids group at the base of distilled water, ammoniac water and Al2O3 nanoparticles causes decrease of dimension changes near keep on the same of hardness of hardened elements from constructional steel. Research limitations/implications: Research limitations result from the quantity of the quenching mediums used in the investigations which one can use as the point of the reference for nanofluids. This arose from initial investigations over this aspect, which is the dimension change of elements. It should also use real the parts of machines or tool in farther investigations. Practical implications: of results presented in this article, we will get in the range of the construction projecting of steel elements, where should consider technological surpluses for this element and material proprieties which has to which meet. For full utilization in the practice, however you should conduct additional investigations still both in the laboratory scale, how and industrial. Originality/value: Originality of this article is the performance of the influence of quenching mediums from the group nanofluids on the dimension changes of hardened steel elements.

Authors and Affiliations

W. Gęstwa

Keywords

Related Articles

Surface topology of friction pairs of A390.0 alloys

Purpose: In the paper, geometric structure of the surface of A390.0 alloy, manufactured using various methods are presented, in combination with EN-GJL-350 cast alloy, which corresponds to parameters used in combustion e...

Analysis of weld bead characteristics on GMAW by changing wire electrode geometry

Purpose: Welding is one of the important processes for the manufacture of a wide varietyof products. Most of the manufactured products have to be produced by welding due to itsgreater productivity and economical viabilit...

Charasteristics of TiCN coating deposited by cathodic arc evaporation

Purpose: In this paper, we report the research results on the structure and mechanical and tribological properties of TiCN coating deposited by cathodic arc evaporation process on the X40CrMoV5-1 steel substrate. Design/...

Starch bioplastic film as an alternative food-packaging material

Purpose: To synthesize bioplastics on a small scale from starch available in potato and tostudy the characteristics of the same when pectin is blended with it.Design/methodology/approach: The bioplastics are fabricated m...

Indexes

Indexes

Download PDF file
  • EP ID EP252312
  • DOI 10.5604/01.3001.0010.7983
  • Views 129
  • Downloads 0

How To Cite

W. Gęstwa (2017). The influence of chemical composition of nanofluids on dimensional changes of hardened constructional steel. Journal of Achievements in Materials and Manufacturing Engineering, 1(85), 5-11. https://europub.co.uk/articles/-A-252312