The influence of hamstring extensibility on preselected saddle height within experienced competitive cyclists

Journal Title: Journal of Science and Cycling - Year 2014, Vol 3, Issue 2

Abstract

Background: Contemporary studies have investigated the effects of bicycle saddle height for optimal performance and injury prevention. A recent review established a dynamic knee flexion angle of 25˚-30˚ for optimal economy, anaerobic power, and knee tracking (Bini et al., 2011: Sports Medicine, 41, 463-476). Muyor et al, (2011: Journal of Human Kinetics, 29, 15-23), investigated hamstring extensibility within 96 highly trained cyclists. They concluded that shortened hamstrings had a negative influence over thoracic spinal curvature, yet no influence over saddle height. Whereas, Ferrer-Roca et al (2012: Journal of Strength and Conditioning Research, 26, 3025- 3029) examined 23 high level competitive male road cyclists and concluded that a lack of flexibility may have an influence over lower preselected saddle heights (> 40˚ knee flexion angle). Consequently, there remains uncertainty whether preselected saddle height may be dependent on hamstring extensibility. Purpose: The purpose of the study was to investigate the influence of hamstring extensibility on preselected saddle height within experienced competitive cyclists. It was suggested that preselected saddle height may be dependent on hamstring extensibility to enable a 25˚-30˚ knee flexion angle. Methods: Participants consisted of 32 moderate to high level male and female road cyclists (35.8 ± 8.4 years; 178.22 ± 11.0 cm; 77.7 ± 13.4 kg). They used their own individually set-up road bicycle, which was placed on an indoor wind trainer. Hamstring extensibility was measured using the passive knee extension test. Dynamic 2D analysis was used to measure bicycle knee flexion and passive knee extension angles. A cycling questionnaire was also used to determine experience, training and competition levels. Results: Pearson’s correlation coefficients revealed bicycle knee flexion angle, years cycling (r = -0.35, p < 0.05), training volume, (r = -0.54, p< 0.01) and competition duration (years) (r = -0.62, p< 0.01) were significant. Whereas, no significance was identified with pre (r = 0.12) and post (r = 0.12) passive knee extension (p > 0.05). Discussion: Results suggest that sustained time period on the bike rather than hamstring extensibility determines preselected saddle height. In particular, being competitive for a longer duration precedes either volume or number of years cycling. However, it is apparent that in agreement with Muyor et al., (2011) a single variable such as hamstring length does not predetermine optimal saddle height. In addition, as suggested by Ferrer-Roca et al., (2012), experienced cyclists are unable to achieve a knee flexion angle of 25˚, unless they have sufficient flexibility. Conclusion: Results reveal that with experience, a competitive cyclist’s subjective and objective interpretation of their preselected saddle height becomes more consistent. Although hamstring extensibility does not appear to influence pre-selected saddle height, an initial 35˚ rather than 25˚ knee flexion angle is recommended. Future research should consider mixed methodologies, to further establish safe and effective recommendations for optimising bicycle fit.

Authors and Affiliations

J Hynd| Sports and Exercise, Teesside University, Middlesbrough, United Kingdom, D Crowle| Sports and Exercise, Teesside University, Middlesbrough, United Kingdom, C Stephenson| Sports and Exercise, Teesside University, Middlesbrough, United Kingdom

Keywords

Related Articles

Relationship between physiological and biomechanical variables with aerobic power output in cycling

Performance in cycling may be determined by physiological and biomechanical parameters. The aim of this study was to assess the relationship between biomechanical and physiological variables with aerobic power output in...

Validation of a new pedal sensor to measure torque, power and work during pedaling.

In the field of biomechanical analysis of pedaling motion, researchers studied the relationship between cost energy and cycling technique for optimal use of the force applied to the pedals, to improve cycling velocity f...

Comparison of physiological and perceptual responses to a maximal exhaustive test performed on the SRM and the Cyclus2 ergometer

Background: No cycle ergometer perfectly replicates the physiological demands and movement patterns associated with real world cycling (Abbiss et al., 2009: International Journal of Sports Medicine, 30(2), 107-112). The...

Reliability and Construct Validity of the Malay Version of the Cyclist Motivation Instrument (CMI)

With the increase interest in cycling, there is a need to understand what motivate cyclist to cycle. The Cyclist Motivation Instrument (CMI) has been shown to be a valid and reliable instrument to measure the motivation...

Preliminary study: the effect of biomechanical foot orthotics in bilateral pedalling asymmetry in three cyclists affected by an anatomic asymmetry

The optimization of the cyclist's position aims to increase performance and may prevent injuries. To find the optimum posture, taking into account anthropometry of the cyclist is essential [1] because an anatomic asymmet...

Download PDF file
  • EP ID EP2851
  • DOI -
  • Views 346
  • Downloads 23

How To Cite

J Hynd, D Crowle, C Stephenson (2014). The influence of hamstring extensibility on preselected saddle height within experienced competitive cyclists. Journal of Science and Cycling, 3(2), 0-0. https://europub.co.uk/articles/-A-2851