The inverse and derivative connecting problems for some Hypergeometric polynomials

Abstract

Given two polynomial sets {Pn(x)}n≥0, and {Qn(x)}n≥0 such that deg(Pn(x))=deg(Qn(x))=n. The so-called connection problem between them asks to find coefficients αn,k in the expression Qn(x)=n∑k=0αn,kPk(x). The connection problem for different types of polynomials has a long history, and it is still of interest. The connection coefficients play an important role in many problems in pure and applied mathematics, especially in combinatorics, mathematical physics and quantum chemical applications. For the particular case Qn(x)=xn the connection problem is called the inversion problem associated to {Pn(x)}n≥0. The particular case Qn(x)=P′n+1(x) is called the derivative connecting problem for polynomial family {Pn(x)}n≥0. In this paper, we give a closed-form expression of the inversion and the derivative coefficients for hypergeometric polynomials of the form 2F1[−n,ab∣∣∣z],2F1[−n,n+ab∣∣∣z],2F1[−n,a±n+b∣∣∣z], where 2F1[a,bc∣∣∣z]=∞∑k=0(a)k(b)k(c)kzkk!, is the Gauss hypergeometric function and (x)n denotes the Pochhammer symbol defined by (x)n={1,n=0,x(x+1)(x+2)⋯(x+n−1),n>0. All polynomials are considered over the field of real numbers.

Authors and Affiliations

L. Bedratyuk, A. Bedratuyk

Keywords

Related Articles

Symmetric *-polynomials on Cn

∗-Polynomials are natural generalizations of usual polynomials between complex vector spa\-ces. A ∗-polynomial is a function between complex vector spaces X and Y, which is a sum of so-called (p,q)-polynomials.In turn, f...

On the similarity of matrices AB and BA over a field

Let A and B be n-by-n matrices over a field. The study of the relationship between the products of matrices AB and BA has a long history. It is well-known that AB and BA have equal characteristic polynomials (and, theref...

On generalized complex space forms satisfying certain curvature conditions

We study Ricci soliton $(g,V,\lambda)$ of generalized complex space forms when the Riemannian, Bochner and $W_2$ curvature tensors satisfy certain curvature conditions like semi-symmetric, Einstein semi-symmetric, Ricci...

The growth of the maximal term of Dirichlet series

Let $\Lambda$ be the class of nonnegative sequences $(\lambda_n)$ increasing to $+\infty$, $A\in(-\infty,+\infty]$, $L_A$ be the class of continuous functions increasing to $+\infty$ on $[A_0,A)$, $(\lambda_n)\in\Lambda$...

Periodic words connected with the Fibonacci words

In this paper we introduce two families of periodic words (FLP-words of type 1 and FLP-words of type 2) that are connected with the Fibonacci words and investigated their properties.

Download PDF file
  • EP ID EP532988
  • DOI 10.15330/cmp.10.2.235-247
  • Views 66
  • Downloads 0

How To Cite

L. Bedratyuk, A. Bedratuyk (2018). The inverse and derivative connecting problems for some Hypergeometric polynomials. Карпатські математичні публікації, 10(2), 235-247. https://europub.co.uk/articles/-A-532988