The numerical efficiency of the method of exact quadratic regularization

Abstract

In this paper we consider methods for solving the multi-extreme problems in Euclidean finite-dimensional space and compare their efficiency at the solution of test problems. Such multi-extreme problems arise at mathematical modeling of various difficult systems in economics and finance, management, technological processes, computer science, design and others. We show that this class of problems contains discrete problems and also problems of solution of nonlinear equations. Recently considerable efforts have been made to find effective methods of solving multi-extreme problems. Nowadays researchers use such methods as: semidefinite programming, methods of branches and bounds, dual, genetic, evolutionary and other methods. Complex testing problems are used for the analysis of the efficiency of offered methods. Test problems of constrained and unconstrained optimization include also complex of applied problems. Numerous experiments prove that known methods find the optimal solution for a limited number of test problems. In this paper we consider the method of exact quadratic regularization. It can be used to transform multi-extreme problems into problems of searching maximum norm of a vector on a convex set. It is a very simple transformation. Such transformation often reduces the initial multiextreme problem to the one-extreme one. For solving the transformed problem we use the primal-dual interior point method and bisection method. These methods allow solving high-dimensional multi-extreme problems. A large number of numerical experiments were performed for checking the efficiency of offered method. By implementing the method of exact quadratic regularization we have obtained better results for most test problems with unknown solutions. Comparative numerous experiments prove the substantial advantage of offered method of exact quadratic regularization over widely used optimization methods

Authors and Affiliations

А. И. Косолап

Keywords

Related Articles

CLUSTER ANALYSIS APPROACHES TO ASSESSING THE FINANCIAL AND ECONOMIC ACTIVITIES OF ENTERPRISES

The article is devoted to the financial and economic assessment of the state of road transport enterprises in Ukraine through the use of multidimensional statistical cluster analysis. The article solved the task of analy...

Применение концепции неопределенности в области измерения расхода

В данной работе рассмотрена проблема определения качества результата измерения расхода вещества. Целью любого измерения является определение значения измеряемой величины, однако для принятия решения по результатам измере...

Метод пакетного навчання нейромереж нелінійної авторегресії для прогнозу прибутку інтернет-магазину

У статті розглядаються і аналізуються існуючі методи прогнозування прибутку інтернет-магазину. В сучасній електронній комерції є проблема недостатньої ефективності автоматизації бізнес-процесів інтернет-магазину. Ґрунтую...

Discrete interpolation method for modeling multiparametric processes, systems and environments

The design of complex technical objects, the modeling of the predicted state of multiparametric systems and environments, for example, ecological, energy, climatic, hydrological, geomorphological, geological systems, is...

Software for design systems of fuzzy control and conducting fuzzy-multiple calculations

The paper suggests a description of the design concept and ways to implement the library to work with data that are fuzzy. Based on a review of the latest researches in the field of fuzzy calculations, we formulated the...

Download PDF file
  • EP ID EP642497
  • DOI -
  • Views 144
  • Downloads 0

How To Cite

А. И. Косолап (2017). The numerical efficiency of the method of exact quadratic regularization. Комп’ютерне моделювання: аналіз, управління, оптимізація, 2(2), 42-47. https://europub.co.uk/articles/-A-642497