Thermo-Hydro-Mechanical-Chemical processes in geological disposal of radioactive waste – An example of regulatory research

Journal Title: Advances in Geo-Energy Research - Year 2018, Vol 2, Issue 2

Abstract

Deep geological disposal is being considered in Canada and many other countries as the most viable option for the long-term management of radioactive waste. The disposal method consists of emplacing the waste in a repository built at hundreds of metres depth in a suitable host rock. A multi-barrier system, that includes the host rock formation as a major component, would be provided in order to protect humans and the environment from the harmful effects of the waste for very extensive time periods. Many events and processes are expected to occur during the lifetime of the repository, such as heat generation from the waste, seismicity and glaciation. As a result of those events and processes the Thermal-Hydraulic-Mechanical-Chemical (THMC) regimes in the natural and engineered components of the multi-barrier system will be perturbed, and the evolution of the THMC regimes and how this evolution affects the multi-barrier performance need to be understood. The Canadian Nuclear Safety Commission (CNSC), Canada’s nuclear regulator, has been conducting independent experimental and theoretical research on coupled THMC processes for several decades. As part of this research, the CNSC used experimental data from laboratory tests and large-scale experiments at underground research laboratories (URL) in order to develop a mathematical framework for the simulation of coupled processes in engineered and natural barriers for geological disposal. In this paper, we describe that mathematical framework and show examples of how it was adapted and applied to several situations: water and gas injection experiment at an URL, a heater experiment at an URL, and the effects of nine glacial cycles in a sedimentary rock formation.

Authors and Affiliations

Thanh Son Nguyen

Keywords

Related Articles

Rheological and filtration characteristics of drilling fluids enhanced by nanoparticles with selected additives: an experimental study

The suspension properties of drilling fluids containing pure and polymer-treated (partially-hydrolyzed polyacrylamide (PHPA) or Xanthan gum) clay nanoparticles are compared withthose of a conventional water-and-bentonite...

Pore-scale remaining oil distribution under different pore volume water injection based on CT technology

A water-injection experiment was performed on a water-wet reservoir core plug that was filled with brine first and then displaced by synthetic oil. A X-ray Computed Tomography (CT) was used to take snapshots of the proce...

Hydrate dissociation induced by gas diffusion from pore water to drilling fluid in a cold wellbore

It is a common view that the high temperature of the drilling fluid can lead to the dissociation of gas hydrate during drilling through hydrate-bearing sediments. This study indicates that the hydrate dissociation in wel...

Quantitative characterization of micropore structure for organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: Implications for shale gas adsorption capacity

The pores in shales are mainly of nanometer-scale, and their pore size distribution is very important for shale gas storage and adsorption capacity, especially micropores having widths less than 2 nm, which contribute to...

Impact of four different CO2 injection schemes on extent of reservoir pressure and saturation

This study investigates how four different injection schemes, (i. constant rate, ii. stepwise increasing rate, iii. stepwise decreasing rate, and iv. cyclic rate), constrained by the cumulative amount of CO2 injected, af...

Download PDF file
  • EP ID EP427926
  • DOI 10.26804/ager.2018.02.06
  • Views 54
  • Downloads 0

How To Cite

Thanh Son Nguyen (2018). Thermo-Hydro-Mechanical-Chemical processes in geological disposal of radioactive waste – An example of regulatory research. Advances in Geo-Energy Research, 2(2), 173-189. https://europub.co.uk/articles/-A-427926