Triton for Nuclear Fusion

Journal Title: American Journal of Engineering and Applied Sciences - Year 2017, Vol 10, Issue 4

Abstract

Triton for Nuclear Fusion Raffaella Aversa, Relly Victoria Petrescu, Antonio Apicella, Samuel Kozaitis, MirMilad Mirsayar, Taher Abu-Lebdeh, Filippo Berto, Bilal Akash and Florian Ion Tiberiu Petrescu DOI : 10.3844/ajeassp.2017.992.1000 American Journal of Engineering and Applied Sciences Volume 10, Issue 4 Pages 992-1000 Abstract In the nuclear fusion process that is permanently produced in the stars (suns) there is a thermonuclear reaction that uses as the main raw material the very first isotope of hydrogen, namely the Protium. This process is possible due to the huge temperatures and the unimaginably high pressures existing inside a star. At very high temperatures and pressures, matter begins to break even at the nuclear level. The nucleons split off and then reunited to form other types of nuclei. If it was initially thought that temperatures of tens or even hundreds of millions of degrees would be needed, today it is already proven that a minimum needed is about 40 trillion degrees. Such huge temperature is very difficult to be achieved on the Earth right now. For this reason, a compensatory solution would be the production of the nuclear fusion reaction with accelerated particles. For this reason, we want to express a major idea, namely the shift to the next hydrogen isotope, 3H, Tritium, which is much less stable compared to the first two, with its widespread use for the achievement of nuclear-merging energy, here on the Earth. We can’t achieve such temperatures yet, on earth, in safety, but especially to keep them. Only through dangerous bombs they can produce and maintain. Then the only method of achieving nuclear fusion power on the ground remains the use of particle accelerators. For this reason, modern physics power stations must look like or contain a nuclear particle accelerator. Whether we produce the cold or hot fusion reaction, we will need at least one particle accelerator. For a long time, I thought that Tokamak-type installations that have a toroidal shape represent the optimal solution for modern fusion power plants. Today, however, we doubt this, because the achieved tor has a small radius of action (the diameter of the tor is too small). But that is not the main issue that this paper proposes. In this study we want to propose the transition to experimentation of nuclear fusion energy, by exploiting (use) of tritium, namely the triton. The idea is to use triton nuclear fuel. But not the triton resulting from the presence of deuterium, but only pure triton, obtained from other methods than deuterium reactions. We propose, therefore, the elimination of deuterium as fuel and the use of Triton in its place. Copyright © 2017 Raffaella Aversa, Relly Victoria Petrescu, Antonio Apicella, Samuel Kozaitis, MirMilad Mirsayar, Taher Abu-Lebdeh, Filippo Berto, Bilal Akash and Florian Ion Tiberiu Petrescu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Authors and Affiliations

Raffaella Aversa, Relly Victoria V. Petrescu, Antonio Apicella, Samuel Kozaitis, MirMilad Mirsayar, Taher M. Abu-Lebdeh, Filippo Berto, Bilal Akash, Florian Ion T. Petrescu

Keywords

Related Articles

Control of Bubble Formation at the Optical Fiber Tip by Analyzing Ultrasound Acoustic Waves

Abstract The problems of controlling the processes of generation of acoustic waves and microbubbles at the optical fiber tip of moderate-power surgical lasers with wavelengths of 1.9 µm and 0.97 µm using active and pass...

WLHP Systems in Commercial Buildings: A Case Study Analysis Based on a Dynamic Simulation Approach

Abstract In this study, the results of the performance analysis of a WLHP system applied to a large mall building located close to Naples (South Italy) is presented. The investigation was carried out through a purposely...

High Performance and Low Leakage 3DSOI Fin-FET SRAM

Abstract In recent semiconductor designs, the major key factors: Competent device simulations, precise device characterization, well power optimization, new architectural design and cost-effective fabrication drives the...

Recent Advances in Point of Care Diagnostic Tools: A Review

Abstract Globally, there is a great need for portable, inexpensive diagnostic tools that can provide quick, accurate results using relatively small sample volumes. Point-Of-Care (POC) measurements of human saliva, sweat...

Investigating the Efficacy of a Bio-Based Modifier to Improve the Rheological Properties of Recycled Asphalt Shingles

This study investigates the use of Bio-Binder, derived from swine manure, as an additive to improve rheological properties of bitumen extracted from recycled asphalt shingles. Test results show that adding Bio-Binder to...

Download PDF file
  • EP ID EP248367
  • DOI 10.3844/ajeassp.2017.992.1000
  • Views 90
  • Downloads 0

How To Cite

Raffaella Aversa, Relly Victoria V. Petrescu, Antonio Apicella, Samuel Kozaitis, MirMilad Mirsayar, Taher M. Abu-Lebdeh, Filippo Berto, Bilal Akash, Florian Ion T. Petrescu (2017). Triton for Nuclear Fusion. American Journal of Engineering and Applied Sciences, 10(4), 992-1000. https://europub.co.uk/articles/-A-248367