Uncertainty: two probabilities for the three states of neutrosophy
Journal Title: International Journal of Neutrosophic Science (IJNS) - Year 2020, Vol 2, Issue 1
Abstract
Uncertainty is inherent to the real world: everything is only probable, precision like in measurements is finite, noise is everywhere... Also, science is based on a modeling of reality that can only be approximate. Therefore we postulate that uncertainty should be considered in our models, and for making this more easy we propose a simple operational conceptualization of uncertainty. Starting from the simple model of associating a probability p to a statement supposed to be true our proposed modeling bridges the gap towards the most complex representation proposed by neutrosophy as a triplet of probabilities. The neutrosophic representation consists in using a triplet of probabilities (t,i,f) instead of just a single probability. In this triplet, t represents the probability of the statement to be true, and f it's the probability to be false. The specific point of neutrosophy it that the probability i represents the probability of the statement to be uncertain, imprecise, or neutral among other significations according to the application. Our proposed representation uses only 2 probabilities instead of 3, and it can be easily translated into the neutrosophic representation. By being simpler we renounce to some power of representing the uncertain but we encourage the modeling of uncertainty (instead of ignoring it) by making this simpler. Briefly said, the prepare the path towards using neutrosophy. Our proposed representation of uncertainty consist, for a statement, not only to add its probability to be true p, but also a second probability pp to model the confidence we have in the first probability p. This second parameter pp represents the plausibility of p, therefore the opposite of its uncertainty. This is the confidence given to the value of p, in short pp is the probability of p (hence the name pp), This is simple to understand, and that allows calculations of combined events using classical probability such as based on the concepts of mean and variance. The stringent advantage of our modeling by the couple (p,pp) is that experts can be easily interrogated to provide their expertise by asking them simply the chance they give to an event a occur (this is p) and the confidence they have in that prediction (which is pp). We give also a formula to transform from our model to the neutrosophic representation. Finally, a short discussion on the entropy as a measure of uncertainty is done.
Authors and Affiliations
Philippe Schweizer
Refined Neutrosophic Rings I
The notion of neutrosophic ring R(I) generated by the ring R and the indeterminacy component I was introduced for the first time in the literature by Vasantha Kandasamy and Smarandache in.12 Since then, fur-ther studies h...
A new ranking function of triangular neutrosophic number and its application in integer programming
Real humankind problems have different sorts of ambiguity in the creation, and amidst them, one of the significant issues in solving the integer linear programming issues. In this commitment, the conception of aggregatio...
Three Possible Applications of Neutrosophic Logic in Fundamental and Applied Sciences
In Neutrosophic Logic, a basic assertion is that there are variations of about everything that we can measure; the variations surround three parameters called T,I,F (truth, indeterminacy, falsehood) which can take a rang...
Using Moving Averages To Pave The Neutrosophic Time Series
In this paper, were using moving averages to pave the Neutrosophic time series. similar to use moving averages to pave the classical time series. the difference, here were dealing with inaccurate data and values of the t...
Neutrosophic ℵ–Ideals (ℵ-Subalgebras) of Subtraction Algebra
The connection between neutrosophy and algebra has been of great interest with respect to many researchers. The objective of this paper is to provide a connection between neutrosophic ℵ−structures and subtraction algebra...