YOLO-VEHICLE: REALTIME VEHICLE LICENCE PLATE DETECTION AND CHARACTER RECOGNITION USING YOLOV7 NETWORK

Abstract

The demand for a secure lifestyle and travel is increasing due to the rapid development of technology. Since the turn of the century, the number of road vehicles has risen dramatically. The rapid growth of the vehicular sector makes tracking individual vehicles increasingly difficult. In this work, a novel proposed YOLO-VEHICLE has been introduced to detect the licence plate in the highway using Yolov7 network. Initially, a CCTV camera captures the input highway traffic video. The collected video is converted into frames. The frames are detected the license plate using the YOLOv7 network. The detected Licence plates (LP) are segmented for partitions a digital image into discrete groups of pixels using U-Net. Finally, the segmented LP recognizing the character for clear view. The simulation outcomes show the performance is assessed by using the accuracy reached by the proposed YOLO-VEHICLE method, as well as its accuracy (ACU), precision (PRE), recall (RCL), and F1 score (F1S). According to the results, the proposed network accuracy was 99.59 %. In the comparison, the YOLOv7 network improves the overall accuracy of the YOLOv3, YOLOv4, and YOLOv5 is 95.14%, 96.32%, and 97.36% respectively. The YOLO-VEHICLE approach improves the overall accuracy of 13.37%, 2.13%, 14.03% better than edge intelligence-based enhanced YOLOv4, Faster R-CNN, and recognition system respectively.

Authors and Affiliations

R. A. Mabel Rose, J. Vasuki and N. Bhavana

Keywords

Related Articles

DINGO OPTIMIZED FUZZY CNN TECHNIQUE FOR EFFICIENT PROTEIN STRUCTURE PREDICTION

Protein is made up of a variety of molecules that are required by living organisms, such as enzymes, hormones, and antibodies. In step 2, the max-pooling layer and the convolutional layer evaluate the input data to creat...

IOT-CENTRIC DATA PROTECTION USING DEEP LEARNING TECHNIQUE FOR PRESERVING SECURITY AND PRIVACY IN CLOUD

The Internet of Things (IoT) describes a system where interconnected physical objects are connected online. As the collection and sharing of vast amounts of personal data grow, so do concerns over user privacy within IoT...

SEMANTIC FEATURE ENABLED AGGLOMERATIVE CLUSTERING FOR INFORMATION TECHNOLOGY JOB PROFILE ANALYSIS

The maintenance and implementation of computer systems are the core activities of information technology. Database administration and network architecture are also included in information technology. Professionals have a...

DEEP LEARNING BASED LSTM-GAN APPROACH FOR INTRUSION DETECTION IN CLOUD ENVIRONMENT

Cloud computing is a rapidly growing technology paradigm with enormous potential. While cloud computing has many advantages, it also poses new security risks. Cloud computing security vulnerabilities have been identified...

A STUDY ON SURGICAL ROBOTS AND THEIR RECENT DEVELOPMENTS

In recent years, Robotics has been rapidly developing with outstanding growth and innovation. This paper aims to analyze the key developments in the sub-domain of robotics such as medical robots, especially surgical robo...

Download PDF file
  • EP ID EP734435
  • DOI -
  • Views 67
  • Downloads 0

How To Cite

R. A. Mabel Rose, J. Vasuki and N. Bhavana (2024). YOLO-VEHICLE: REALTIME VEHICLE LICENCE PLATE DETECTION AND CHARACTER RECOGNITION USING YOLOV7 NETWORK. International Journal of Data Science and Artificial Intelligence, 2(01), -. https://europub.co.uk/articles/-A-734435