3D bioprinting technology for regenerative medicine application
Journal Title: International Journal of Bioprinting - Year 2016, Vol 2, Issue 2
Abstract
Alternative strategies that overcome existing organ transplantation methods are of increasing importance because of ongoing demands and lack of adequate organ donors. Recent improvements in tissue engineering techniques offer improved solutions to this problem and will influence engineering and medicinal applications. Tissue engineering employs the synergy of cells, growth factors and scaffolds besides others with the aim to mimic the native extracellular matrix for tissue regeneration. Three-dimensional (3D) bioprinting has been explored to create organs for transplantation, medical implants, prosthetics, in vitro models and 3D tissue models for drug testing. In addition, it is emerging as a powerful technology to provide patients with severe disease conditions with personalized treatments. Challenges in tissue engineering include the development of 3D scaffolds that closely resemble native tissues. In this review, existing printing methods such as extrusion-based, robotic dispensing, cellular inkjet, laser-assisted printing and integrated tissue organ printing (ITOP) are examined. Also, natural and synthetic polymers and their blends as well as peptides that are exploited as bioinks are discussed with emphasis on regenerative medicine applications. Furthermore, applications of 3D bioprinting in regenerative medicine, evolving strategies and future perspectives are summarized.
Authors and Affiliations
Dhakshinamoorthy Sundaramurthi, Sakandar Rauf and Charlotte A. E. Hauser
Microstereolithography-fabricated microneedles for fluid sampling of histamine-contaminated tuna
A custom-designed microneedle sampling system was prepared using dynamic mask microstereolithography; this sampling system was used for determination of histamine content in fresh, histamine-spiked, and spoiled tuna fles...
Designs and applications of electrohydrodynamic 3D printing
This paper mainly reviews the designs of electrohydrodynamic (EHD) inkjet printing machine and related applications. The review introduces the features of EHD printing and its possible research directions. Significant pr...
Hybrid three-dimensional (3D) bioprinting of retina equivalent for ocular research
In this article, a hybrid retina construct was created via three-dimensional (3D) bioprinting technology. The construct was composed of a PCL ultrathin membrane, ARPE-19 cell monolayer and Y79 cell-laden alginate/pluroni...
Three-dimensional-printing for microfluidics or the other way around?
As microfluidic devices are designed to tackle more intricate tasks, the architecture of microfluidic devices becomes more complex, and more sophisticated fabrication techniques are in demand. Therefore, it is sensible t...
A multi-scale porous scaffold fabricated by a combined additive manufacturing and chemical etching process for bone tissue engineering
It is critical to develop a fabrication technology for precisely controlling an interconnected porous structure of scaffolds to mimic the native bone microenvironment. In this work, a novel combined process of additive m...