Artificial vascularized scaffolds for 3D-tissue regeneration — a report of the ArtiVasc 3D Project
Journal Title: International Journal of Bioprinting - Year 2016, Vol 2, Issue 1
Abstract
The aim of this paper is to raise awareness of the ArtiVasc 3D project and its findings. Vascularization is one of the most important and highly challenging issues in the development of soft tissue. It is necessary to supply cells with nutrition within a multilayer tissue, for example in artificial skin. Research on artificial skin is driven by an increasing demand for two main applications. Firstly, for the field of regenerative medicine, the aim is to provide patients with implants or grafts to replace damaged soft tissue after traumatic injuries or ablation surgery. Secondly, another aim is to substitute expensive and ethically disputed pharmaceutical tests on animals by providing artificial vascularized test beds to simulate the effect of pharmaceuticals into the blood through the skin. This paper provides a perspective on ArtiVasc 3D, a major European Commission funded project that explored the development of a full thickness, vascularized artificial skin. The paper provides an overview of the aims and objectives of the project and describes the work packages and partners involved. The most significant results of the project are summarized and a discussion of the overall success and remaining work is given. We also provide the journal papers resulting from the project
Authors and Affiliations
Richard Bibb, Nadine Nottrodt and Arnold Gillner
Bioprinting of Multimaterials with Computer-aided Design/Computer-aided Manufacturing
Multimaterials deposition, a distinct advantage in bioprinting, overcomes material’s limitation in hydrogel-based bioprinting. Multimaterials are deposited in a build/support configuration to improve the structural integ...
Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs
Cell printing has found wide applications in biomedical fields due to its unique capability in fabricating living tissue constructs with precise control over cell arrangements. However, it is still challenging to print c...
Functional Approach to Development of Hybrid Technology of Cutting Diamond Carbides
Background: Modern composite materials have a number of advantages in comparison with the traditionally used ones and allow implementing new methods of processing, which makes the finished product cheaper and makes its u...
3D food printing—An innovative way of mass customization in food fabrication
About 15%–25% of the aging population suffers from swallowing difficulties, and this creates an increasing market need for mass customization of food. The food industry is investigating mass customization techniques to m...
3D bioprinting for tissue engineering: Stem cells in hydrogels
Surgical limitations require alternative methods of repairing and replacing diseased and damaged tissue. Regenerative medicine is a growing area of research with engineered tissues already being used successfully in pati...