3D bioprinting for tissue engineering: Stem cells in hydrogels

Journal Title: International Journal of Bioprinting - Year 2016, Vol 2, Issue 1

Abstract

Surgical limitations require alternative methods of repairing and replacing diseased and damaged tissue. Regenerative medicine is a growing area of research with engineered tissues already being used successfully in patients. However, the demand for such tissues greatly outweighs the supply and a fast and accurate method of production is still required. 3D bioprinting offers precision control as well as the ability to incorporate biological cues and cells directly into the material as it is being fabricated. Having precise control over scaffold morphology and chemistry is a significant step towards controlling cellular behaviour, particularly where undifferentiated cells, i.e., stem cells, are used. This level of control in the early stages of tissue development is crucial in building more complex systems that morphologically and functionally mimic in vivo tissue. Here we review 3D printing hydrogel materials for tissue engineering purposes and the incorporation of cells within them. Hydrogels are ideal materials for cell culture. They are structurally similar to native extracellular matrix, have a high nutrient retention capacity, allow cells to migrate and can be formed under mild conditions. The techniques used to produce these materials, as well as their benefits and limitations, are outlined.

Authors and Affiliations

Nazia Mehrban, Gui Zhen Teoh and Martin Anthony Birchall

Keywords

Related Articles

Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D in vitro testing model

Autografts are the current gold standard for large peripheral nerve defects in clinics despite the frequently occurring side effects like donor site morbidity. Hollow nerve guidance conduits (NGC) are proposed alternativ...

3D printing for drug manufacturing: A perspective on the future of pharmaceuticals

Since a three-dimensional (3D) printed drug was first approved by the Food and Drug Administration in 2015, there has been a growing interest in 3D printing for drug manufacturing. There are multiple 3D printing methods...

Development and characterization of a photocurable alginate bioink for three-dimensional bioprinting

Alginate is a biocompatible material suitable for biomedical applications, which can be processed under mild conditions on irradiation. This paper investigates the preparation and the rheological behavior of different pr...

Bioprinting of osteochondral tissues: A perspective on current gaps and future trends

Osteochondral tissue regeneration has remained a critical challenge in orthopaedic surgery, especially due to complications of arthritic degeneration arising out of mechanical dislocations of joints. The common gold stan...

Creation of a vascular system for organ manufacturing

The creation of a vascular system is considered to be the main object for complex organ manufacturing. In this short review, we demonstrate two approaches to generate a branched vascular system which can be printed using...

Download PDF file
  • EP ID EP678638
  • DOI -
  • Views 170
  • Downloads 0

How To Cite

Nazia Mehrban, Gui Zhen Teoh and Martin Anthony Birchall (2016). 3D bioprinting for tissue engineering: Stem cells in hydrogels. International Journal of Bioprinting, 2(1), -. https://europub.co.uk/articles/-A-678638