Osteosarcoma growth on trabecular bone mimicking structures manufactured via laser direct write
Journal Title: International Journal of Bioprinting - Year 2016, Vol 2, Issue 2
Abstract
This paper describes the direct laser write of a photocurable acrylate-based PolyHIPE (High Internal Phase Emulsion) to produce scaffolds with both macro- and microporosity, and the use of these scaffolds in osteosarcoma-based 3D cell culture. The macroporosity was introduced via the application of stereolithography to produce a classical “woodpile” structure with struts having an approximate diameter of 200 μm and pores were typically around 500 μm in diameter. The PolyHIPE retained its microporosity after stereolithographic manufacture, with a range of pore sizes typically between 10 and 60 μm (with most pores between 20 and 30 μm). The resulting scaffolds were suitable substrates for further modification using acrylic acid plasma polymerisation. This scaffold was used as a structural mimic of the trabecular bone and in vitro determination of biocompatibility using cultured bone cells (MG63) demonstrated that cells were able to colonise all materials tested, with evidence that acrylic acid plasma polymerisation improved biocompatibility in the long term. The osteosarcoma cell culture on the 3D printed scaffold exhibits different growth behaviour than observed on tissue culture plastic or a flat disk of the porous material; tumour spheroids are observed on parts of the scaffolds. The growth of these spheroids indicates that the osteosarcoma behave more akin to in vivo in this 3D mimic of trabecular bone. It was concluded that PolyHIPEs represent versatile biomaterial systems with considerable potential for the manufacture of complex devices or scaffolds for regenerative medicine. In particular, the possibility to readily mimic the hierarchical structure of native tissue enables opportunities to build in vitro models closely resembling tumour tissue.
Authors and Affiliations
Atra Malayeri, Colin Sherborne, Thomas Paterson, Shweta Mittar, Ilida Ortega Asencio, Paul V. Hatton and Frederik Claeyssens
Electrospun 3D multi-scale fibrous scaffold for enhanced human dermal fibroblasts infiltration
Electrospun polymeric nanofibrous scaffold possesses significant potential in the field of tissue engineering due to its extracellular matrix mimicking topographical features that modulate a variety of key cellular activ...
Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D in vitro testing model
Autografts are the current gold standard for large peripheral nerve defects in clinics despite the frequently occurring side effects like donor site morbidity. Hollow nerve guidance conduits (NGC) are proposed alternativ...
Development and characterization of a photocurable alginate bioink for three-dimensional bioprinting
Alginate is a biocompatible material suitable for biomedical applications, which can be processed under mild conditions on irradiation. This paper investigates the preparation and the rheological behavior of different pr...
A Perspective on Using Machine Learning in 3D Bioprinting
Recently, three-dimensional (3D) printing technologies have been widely applied in industry and our daily lives. The term 3D bioprinting has been coined to describe 3D printing at the biomedical level. Machine learning i...
Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds
Three-dimensional (3D) printing has been emerging as a new technology for scaffold fabrication to overcome the problems associated with the undesirable microstructure associated with the use of traditional methods. Solve...