Uncovering 3D bioprinting research trends: A keyword network mapping analysis
Journal Title: International Journal of Bioprinting - Year 2018, Vol 4, Issue 2
Abstract
A scientometric analysis as part of a Competitive Technology Intelligence methodology was used to determine the main research efforts in 3D bioprinting. Papers from Scopus and Web of Science (WoS) published between 2000 and 2017 were analysed. A network map of the most frequently occurring keywords in these articles was created, and their average publication year (APY) was determined. The analysis focused on the most relevant keywords that occurred at least five times. A total of 1,759 keywords were obtained, and a co-occurrence analysis was developed for APYs with more keywords: 2011–2016. The results indicated that Polylactic Acid (PLA) is the material used most often. Applications mainly focused on bone tissue engineering and regeneration. The most frequently used technique was inkjet printing, and the main cell sources were Mesenchymal Stem Cells (MSC). From a general perspective, ‘Treatment’ and ‘Bioink’ were the most frequent keywords. The former was mainly related to cancer, regenerative medicine, and MSC and the latter, to multicellular spheroid deposition and the use of hydrogels like GelMA (gelatin methacryloyl). This analysis provides insights to stakeholders involved in 3D bioprinting research and development who need to keep abreast of scientific progress in the field.
Authors and Affiliations
Leonardo Azael Garcia-Garcia, Marisela Rodriguez-Salvador
Uncovering 3D bioprinting research trends: A keyword network mapping analysis
A scientometric analysis as part of a Competitive Technology Intelligence methodology was used to determine the main research efforts in 3D bioprinting. Papers from Scopus and Web of Science (WoS) published between 2000...
Of balls, inks and cages: Hybrid biofabrication of 3D tissue analogs
The overarching principle of three-dimensional (3D) bioprinting is the placing of cells or cell clusters in the 3D space to generate a cohesive tissue microarchitecture that comes close to in vivo characteristics. To ach...
A new design of an electrospinning apparatus for tissue engineering applications
The electrospinning technique is being widely explored in the biomedical field due to its simplicity to produce meshes and its capacity to mimic the micro-nanostructure of the natural extracellular matrix. For skin tissu...
Discovering new 3D bioprinting applications: Analyzing the case of optical tissue phantoms
Optical tissue phantoms enable to mimic the optical properties of biological tissues for biomedical device calibration, new equipment validation, and clinical training for the detection, and treatment of diseases. Unfort...
Investigation of process parameters of electrohydro-dynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries
Tissue engineering is a promising technology in the field of regenerative medicine with its potential to create tissues de novo. Though there has been a good progress in this field so far, there still exists the challeng...