Investigation of process parameters of electrohydro-dynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries

Journal Title: International Journal of Bioprinting - Year 2016, Vol 2, Issue 1

Abstract

Tissue engineering is a promising technology in the field of regenerative medicine with its potential to create tissues de novo. Though there has been a good progress in this field so far, there still exists the challenge of providing a 3D micro-architecture to the artificial tissue construct, to mimic the native cell or tissue environment. Both 3D printing and 3D bioprinting are looked upon as an excellent solution due to their capabilities of mimicking the native tissue architecture layer-by-layer with high precision and appreciable resolution. Electrohydrodynamic jetting (E-jetting) is one type of 3D printing, in which, a high electric voltage is applied between the extruding nozzle and the substrate in order to print highly controlled fibres. In this study, an E-jetting system was developed in-house for the purpose of 3D printing of fibrous scaffolds. The effect of various E-jetting parameters, namely the supply voltage, solution concentration, nozzle-to-substrate distance, stage (printing) speed and solution dispensing feed rate on the diameter of printed fibres were studied at the first stage. Optimized parameters were then used to print Polycaprolactone (PCL) scaffolds of highly complex geometries, i.e., semi-lunar and spiral geometries, with the aim of demonstrating the flexibility and capability of the system to fabricate complex geometry scaffolds and biomimic the complex 3D micro-architecture of native tissue environment. The spiral geometry is expected to result in better cell migration during cell culture and tissue maturation.

Authors and Affiliations

Hui Wang, Sanjairaj Vijayavenkataraman, Yang Wu, Zhen Shu, Jie Sun1 and Jerry Fuh Ying Hsi

Keywords

Related Articles

A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network

Polyetheretherketone (PEEK) is a high-performance thermoplastic biomaterial which is currently used in a variety of biomedical orthopaedic applications. It has comparable tensile and compressive strength to cortical bone...

Colony development of laser printed eukaryotic (yeast and microalga) microorganisms in co-culture

Laser Induced Forward Transfer (LIFT) bioprinting is one of a group of techniques that have been largely applied for printing mammalian cells so far. Bioprinting allows precise placement of viable cells in a defined matr...

An nMgO containing scaffold: Antibacterial activity, degradation properties and cell responses

Bone repair failure caused by implant-related infections is a common and troublesome problem. In this study, an antibacterial scaffold was developed via selective laser sintering with incorporating nano magnesium oxide (...

High-precision three-dimensional inkjet technology for live cell bioprinting

In recent years, bioprinting has emerged as a promising technology for the construction of three-dimensional (3D) tissues to be used in regenerative medicine or in vitro screening applications. In the present study, we p...

Structural, mechanical and in vitro studies on pulsed laser deposition of hydroxyapatite on additive manufactured polyamide substrate

Additive manufacturing (AM) is an emerging field that merges engineering and life sciences to produce components that can effectively act as a replacement in the human body. This AM encompasses biofabrication using cells...

Download PDF file
  • EP ID EP678643
  • DOI -
  • Views 198
  • Downloads 0

How To Cite

Hui Wang, Sanjairaj Vijayavenkataraman, Yang Wu, Zhen Shu, Jie Sun1 and Jerry Fuh Ying Hsi (2016). Investigation of process parameters of electrohydro-dynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries. International Journal of Bioprinting, 2(1), -. https://europub.co.uk/articles/-A-678643