Investigation of process parameters of electrohydro-dynamic jetting for 3D printed PCL fibrous scaffolds with complex geometries
Journal Title: International Journal of Bioprinting - Year 2016, Vol 2, Issue 1
Abstract
Tissue engineering is a promising technology in the field of regenerative medicine with its potential to create tissues de novo. Though there has been a good progress in this field so far, there still exists the challenge of providing a 3D micro-architecture to the artificial tissue construct, to mimic the native cell or tissue environment. Both 3D printing and 3D bioprinting are looked upon as an excellent solution due to their capabilities of mimicking the native tissue architecture layer-by-layer with high precision and appreciable resolution. Electrohydrodynamic jetting (E-jetting) is one type of 3D printing, in which, a high electric voltage is applied between the extruding nozzle and the substrate in order to print highly controlled fibres. In this study, an E-jetting system was developed in-house for the purpose of 3D printing of fibrous scaffolds. The effect of various E-jetting parameters, namely the supply voltage, solution concentration, nozzle-to-substrate distance, stage (printing) speed and solution dispensing feed rate on the diameter of printed fibres were studied at the first stage. Optimized parameters were then used to print Polycaprolactone (PCL) scaffolds of highly complex geometries, i.e., semi-lunar and spiral geometries, with the aim of demonstrating the flexibility and capability of the system to fabricate complex geometry scaffolds and biomimic the complex 3D micro-architecture of native tissue environment. The spiral geometry is expected to result in better cell migration during cell culture and tissue maturation.
Authors and Affiliations
Hui Wang, Sanjairaj Vijayavenkataraman, Yang Wu, Zhen Shu, Jie Sun1 and Jerry Fuh Ying Hsi
Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs
Cell printing has found wide applications in biomedical fields due to its unique capability in fabricating living tissue constructs with precise control over cell arrangements. However, it is still challenging to print c...
Creation of a vascular system for organ manufacturing
The creation of a vascular system is considered to be the main object for complex organ manufacturing. In this short review, we demonstrate two approaches to generate a branched vascular system which can be printed using...
Artificial vascularized scaffolds for 3D-tissue regeneration — a report of the ArtiVasc 3D Project
The aim of this paper is to raise awareness of the ArtiVasc 3D project and its findings. Vascularization is one of the most important and highly challenging issues in the development of soft tissue. It is necessary to su...
Designs and applications of electrohydrodynamic 3D printing
This paper mainly reviews the designs of electrohydrodynamic (EHD) inkjet printing machine and related applications. The review introduces the features of EHD printing and its possible research directions. Significant pr...
A methodology to develop a vascular geometry for in vitro cell culture using additive manufacturing
Today, additive manufacturing (AM) is implemented in medical industry and profoundly revolutionizes this area. This approach consists of producing parts by additions of layers of successive materials and offers advantage...