Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization

Journal Title: International Journal of Bioprinting - Year 2018, Vol 4, Issue 2

Abstract

The placenta is a transient organ, essential for development and survival of the unborn fetus. It interfaces the body of the pregnant woman with the unborn child and secures transport of endogenous and exogenous substances. Maternal and fetal blood are thereby separated at any time, by the so-called placental barrier. Current in vitro approaches fail to model this multifaceted structure, therefore research in the field of placental biology is particularly challenging. The present study aimed at establishing a novel model, simulating placental transport and its implications on development, in a versatile but reproducible way. The basal membrane was replicated using a gelatin-based material, closely mimicking the composition and properties of the natural extracellular matrix. The microstructure was produced by using a high-resolution 3D printing method – the two-photon polymerization (2PP). In order to structure gelatin by 2PP, its primary amines and carboxylic acids are modified with methacrylamides and methacrylates (GelMOD-AEMA), respectively. High-resolution structures in the range of a few micrometers were produced within the intersection of a customized microfluidic device, separating the x-shaped chamber into two isolated cell culture compartments. Human umbilical-vein endothelial cells (HUVEC) seeded on one side of this membrane simulate the fetal compartment while human choriocarcinoma cells, isolated from placental tissue (BeWo B30) mimic the maternal syncytium. This barrier model in combination with native flow profiles can be used to mimic the microenvironment of the placenta, investigating different pharmaceutical, clinical and biological scenarios. As proof-of-principle, this bioengineered placental barrier was used for the investigation of transcellular transport processes. While high molecular weight substances did not permeate, smaller molecules in the size of glucose were able to diffuse through the barrier in a time-depended manner. We envision to apply this bioengineered placental barrier for pathophysiological research, where altered nutrient transport is associated with health risks for the fetus.

Authors and Affiliations

Denise Mandt, Peter Gruber, Marica Markovic, Maximillian Tromayer, Mario Rothbauer, Sebastian Rudi Adam Kratz, Syed Faheem Ali, Jasper Van Hoorick, Wolfgang Holnthoner, Severin Mühleder, Peter Dubruel, Sandra Van Vlierberghe, Peter Ertl, Robert Liska, Aleksandr Ovsianikov

Keywords

Related Articles

Extrusion-Based Bioprinting through Glucose-Mediated Enzymatic Hydrogelation

We report an extrusion-based bioprinting approach, in which stabilization of extruded bioink is achieved through horseradish peroxidase (HRP)-catalyzed cross-linking consuming hydrogen peroxide (H2O2) supplied from HRP a...

Digital biomanufacturing supporting vascularization in 3D bioprinting

Synergies in bioprinting are appearing from individual researchers focusing on divergent aspects of the technology. Many are now evolving from simple mono-dimensional operations to model-controlled multi-material, interp...

Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds

One of the important constituents in tissue engineering is scaffold, which provides structural support and suitable microenvironment for the cell attachment, growth and proliferation. To fabricate micro/nano structures f...

Conductive collagen/polypyrrole-b-polycaprolactone hydrogel for bioprinting of neural tissue constructs

Bioprinting is increasingly being used for fabrication of engineered tissues for regenerative medicine, drug testing, and other biomedical applications. The success of this technology lies with the development of suitabl...

Book review – Standards, quality control, and measurement sciences in 3D printing and additive manufacturing

There is a gap between 3D printing’s fast pace of development and the acceptance of 3D printing technologies by other industries and applications. This hesitation comes mostly from unanswered questions about the consiste...

Download PDF file
  • EP ID EP678689
  • DOI -
  • Views 179
  • Downloads 0

How To Cite

Denise Mandt, Peter Gruber, Marica Markovic, Maximillian Tromayer, Mario Rothbauer, Sebastian Rudi Adam Kratz, Syed Faheem Ali, Jasper Van Hoorick, Wolfgang Holnthoner, Severin Mühleder, Peter Dubruel, Sandra Van Vlierberghe, Peter Ertl, Robert Liska, Aleksandr Ovsianikov (2018). Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization. International Journal of Bioprinting, 4(2), -. https://europub.co.uk/articles/-A-678689