Digital biomanufacturing supporting vascularization in 3D bioprinting

Journal Title: International Journal of Bioprinting - Year 2017, Vol 3, Issue 1

Abstract

Synergies in bioprinting are appearing from individual researchers focusing on divergent aspects of the technology. Many are now evolving from simple mono-dimensional operations to model-controlled multi-material, interpenetrating networks using multi-modal deposition techniques. Bioinks are being designed to address numerous critical process parameters. Both the cellular constructs and architectural design for the necessary vascular component in digitally biomanufactured tissue constructs are being addressed. Advances are occurring from the topology of the circuits to the source of the of the biological microvessel components. Instruments monitoring and control of these activates are becoming interconnected. More and higher quality data are being collected and analysis is becoming richer. Information management and model generation is now describing a “process network.” This is promising; more efficient use of both locally and imported raw data supporting accelerated strategic as well as tactical decision making. This allows real time optimization of the immediate bioprinting bioprocess based on such high value criteria as instantaneous progress assessment and comparison to previous activities. Finally, operations up- and down-stream of the deposition are being included in a supervisory enterprise control.

Authors and Affiliations

William Whitford and James B. Hoying

Keywords

Related Articles

A Perspective on Using Machine Learning in 3D Bioprinting

Recently, three-dimensional (3D) printing technologies have been widely applied in industry and our daily lives. The term 3D bioprinting has been coined to describe 3D printing at the biomedical level. Machine learning i...

3D bioprinting technology for regenerative medicine application

Alternative strategies that overcome existing organ transplantation methods are of increasing importance because of ongoing demands and lack of adequate organ donors. Recent improvements in tissue engineering techniques...

Application of piezoelectric cells printing on three-dimensional porous bioceramic scaffold for bone regeneration

In recent years, the additive manufacture was popularly used in tissue engineering, as the various technologies for this field of research can be used. The most common method is extrusion, which is commonly used in many...

Rapid and efficient in vivo angiogenesis directed by electro-assisted bioprinting of alginate/collagen microspheres with human umbilical vein endothelial cell coating layer

Rapid reconstruction of functional microvasculature is the urgent challenge of regenerative medicine and ischemia therapy development. The purpose of this study was to provide an alternative solution for obtaining functi...

Digital biomanufacturing supporting vascularization in 3D bioprinting

Synergies in bioprinting are appearing from individual researchers focusing on divergent aspects of the technology. Many are now evolving from simple mono-dimensional operations to model-controlled multi-material, interp...

Download PDF file
  • EP ID EP678658
  • DOI -
  • Views 158
  • Downloads 0

How To Cite

William Whitford and James B. Hoying (2017). Digital biomanufacturing supporting vascularization in 3D bioprinting. International Journal of Bioprinting, 3(1), -. https://europub.co.uk/articles/-A-678658