Bioprinting with human stem cell-laden alginate-gelatin bioink and bioactive glass for tissue engineering
Journal Title: International Journal of Bioprinting - Year 2019, Vol 5, Issue 2
Abstract
Three-dimensional (3D) bioprinting technologies have shown great potential in the fabrication of 3D models for different human tissues. Stem cells are an attractive cell source in tissue engineering as they can be directed by material and environmental cues to differentiate into multiple cell types for tissue repair and regeneration. In this study, we investigate the viability of human adipose-derived mesenchymal stem cells (ASCs) in alginate-gelatin (Alg-Gel) hydrogel bioprinted with or without bioactive glass. Highly angiogenic borate bioactive glass (13-93B3) in 50 wt% is added to polycaprolactone (PCL) to fabricate scaffolds using a solvent-based extrusion 3D bioprinting technique. The fabricated scaffolds with 12 × 12 × 1 mm3 in overall dimensions are physically characterized, and the glass dissolution from PCL/glass composite over a period of 28 days is studied. Alg-Gel composite hydrogel is used as a bioink to suspend ASCs, and scaffolds are then bioprinted in different configurations: Bioink only, PCL+bioink, and PCL/glass+bioink, to investigate ASC viability. The results indicate the feasibility of the solvent-based bioprinting process to fabricate 3D cellularized scaffolds with more than 80% viability on day 0. The decrease in viability after 7 days due to glass concentration and static culture conditions is discussed. The feasibility of modifying Alg-Gel with 13-93B3 glass for bioprinting is also investigated, and the results are discussed.
Authors and Affiliations
Krishna C. R. Kolan, Julie A. Semon, Bradley Bromet, Delbert E. Day, Ming C. Leu
Three-dimensional-printing for microfluidics or the other way around?
As microfluidic devices are designed to tackle more intricate tasks, the architecture of microfluidic devices becomes more complex, and more sophisticated fabrication techniques are in demand. Therefore, it is sensible t...
Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering
Bioprinting is a promising automated platform that enables the simultaneous deposition of multiple types of cells and biomaterials to fabricate complex three-dimensional (3D) tissue constructs. Collagen-based biomaterial...
3D printing for drug manufacturing: A perspective on the future of pharmaceuticals
Since a three-dimensional (3D) printed drug was first approved by the Food and Drug Administration in 2015, there has been a growing interest in 3D printing for drug manufacturing. There are multiple 3D printing methods...
Personalized anesthetic patches for dental applications
Topical anesthetics are widely used in dental procedures. However, most commercially available medications are in the form of liquid or semisolid, which cannot provide prolonged effect intraorally. To address this issue,...
Preventing bacterial adhesion on scaffolds for bone tissue engineering
Bone implant infection constitutes a major sanitary concern which is associated to high morbidity and health costs. This manuscript focused on overviewing the main research efforts committed up to date to develop innovat...