Formation of cell spheroids using Standing Surface Acoustic Wave (SSAW)
Journal Title: International Journal of Bioprinting - Year 2018, Vol 4, Issue 1
Abstract
3D bioprinting becomes one of the popular approaches in the tissue engineering. In this emerging application, bioink is crucial for fabrication and functionality of constructed tissue. The use of cell spheroids as bioink can enhance the cell-cell interaction and subsequently the growth and differentiation of cells in the 3D printed construct with the minimum amount of other biomaterials. However, the conventional methods of preparing the cell spheroids have several limitations, such as long culture time, low-throughput, and medium modification. In this study, the formation of cell spheroids by SSAW was evaluated both numerically and experimentally in order to overcome the aforementioned limitations. The effects of excitation frequencies on the cell accumulation time, diameter of the formed cell spheroids, and subsequently, the growth and viability of cell spheroids in the culture medium over time were studied. Using the high-frequency (23.8 MHz) excitation, cell accumulation time to the pressure nodes could be reduced in comparison to that of the low-frequency (10.4 MHz) excitation, but in a smaller spheroid size. SSAW excitation at both frequencies does not affect the cell viability up to 7 days, > 90% with no statistical difference compared with the control group. In summary, SSAW can effectively prepare the cell spheroids as bioink for the future 3D bioprinting and various biotechnology applications (e.g., pharmaceutical drug screening and tissue engineering).
Authors and Affiliations
Yannapol Sriphutkiat, Surasak Kasetsirikul, Yufeng Zhou
Bioprinting of Multimaterials with Computer-aided Design/Computer-aided Manufacturing
Multimaterials deposition, a distinct advantage in bioprinting, overcomes material’s limitation in hydrogel-based bioprinting. Multimaterials are deposited in a build/support configuration to improve the structural integ...
Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization
The placenta is a transient organ, essential for development and survival of the unborn fetus. It interfaces the body of the pregnant woman with the unborn child and secures transport of endogenous and exogenous substanc...
3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering
Three-dimensional (3D) printing of hydrogels is now an attractive area of research due to its capability to fabricate intricate, complex and highly customizable scaffold structures that can support cell adhesion and prom...
Novel ultrashort self-assembling peptide bioinks for 3D culture of muscle myoblast cells
The ability of skeletal muscle to self-repair after a traumatic injury, tumor ablation, or muscular disease is slow and limited, and the capacity of skeletal muscle to self-regenerate declines steeply with age. Tissue en...
Hybrid polycaprolactone/hydrogel scaffold fabrication and in-process plasma treatment using PABS
A challenge for tissue engineering is to produce synthetic scaffolds of adequate chemical, physical, and biological cues effectively. Due to the hydrophobicity of the commonly used synthetic polymers, the printed scaffol...