A new design of an electrospinning apparatus for tissue engineering applications
Journal Title: International Journal of Bioprinting - Year 2017, Vol 3, Issue 2
Abstract
The electrospinning technique is being widely explored in the biomedical field due to its simplicity to produce meshes and its capacity to mimic the micro-nanostructure of the natural extracellular matrix. For skin tissue engineering applications, wound dressings made from electrospun nanofibers present several advantages compared to conventional dressings, such as the promotion of the hemostasis phase, wound exudate absorption, semi-permeability, easy conformability to the wound, functional ability and no scar induction. Despite being a relatively simple technique, electrospinning is strongly influenced by polymer solution characteristics, processing parameters and environmental conditions, which strongly determine the production of fibers and their morphology. However, most electrospinning systems are wrongly designed, presenting a large number of conductive components that compromises the stability of the spinning process. This paper presents a new design of an electrospinning system solving the abovementioned limitations. The system was assessed through the production of polycaprolactone (PCL) and gelatin nanofibers. Different solvents and processing parameters were considered. Results show that the proposed electrospinning system is suitable to produce reproducible and homogeneous electrospun fibers for tissue engineering applications.
Authors and Affiliations
Juliana R. Dias, Cyril dos Santos , João Horta, Pedro Lopes Granja and Paulo Jorge Bártolo
3D bioprinting processes: A perspective on classification and terminology
This article aims to provide further classification of cell-compatible bioprinting processes and examine the concept of 3D bioprinting within the general technology field of 3D printing. These technologies are categorize...
Osteosarcoma growth on trabecular bone mimicking structures manufactured via laser direct write
This paper describes the direct laser write of a photocurable acrylate-based PolyHIPE (High Internal Phase Emulsion) to produce scaffolds with both macro- and microporosity, and the use of these scaffolds in osteosarcoma...
Extrusion-Based Bioprinting through Glucose-Mediated Enzymatic Hydrogelation
We report an extrusion-based bioprinting approach, in which stabilization of extruded bioink is achieved through horseradish peroxidase (HRP)-catalyzed cross-linking consuming hydrogen peroxide (H2O2) supplied from HRP a...
A continuous net-like eutectic structure enhances the corrosion resistance of Mg alloys
Mg alloys degrade rather rapidly in a physiological environment, although they have good biocompatibility and favorable mechanical properties. In this study, Ti was introduced into AZ61 alloy fabricated by selective lase...
A novel 3D printing method for cell alignment and differentiation
The application of bioprinting allows precision deposition of biological materials for bioengineering applications. Here we propose a 2 stage methodology for bioprinting using a back pressure-driven, automated robotic di...