Bioprinting of Multimaterials with Computer-aided Design/Computer-aided Manufacturing

Journal Title: International Journal of Bioprinting - Year 2020, Vol 6, Issue 1

Abstract

Multimaterials deposition, a distinct advantage in bioprinting, overcomes material’s limitation in hydrogel-based bioprinting. Multimaterials are deposited in a build/support configuration to improve the structural integrity of threedimensional bioprinted construct. A combination of rapid cross-linking hydrogel has been chosen for the build/support setup. The bioprinted construct was further chemically cross-linked to ensure a stable construct after print. This paper also proposes a file segmentation and preparation technique to be used in bioprinting for printing freeform structures.

Authors and Affiliations

J. M. Lee, S. L. Sing, W. Y. Yeong

Keywords

Related Articles

Hydrolytic Expansion Induces Corrosion Propagation for Increased Fe Biodegradation

Fe is regarded as a promising bone implant material due to inherent degradability and high mechanical strength, but its degradation rate is too slow to match the healing rate of bone. In this work, hydrolytic expansion w...

Pre-clinical evaluation of advanced nerve guide conduits using a novel 3D in vitro testing model

Autografts are the current gold standard for large peripheral nerve defects in clinics despite the frequently occurring side effects like donor site morbidity. Hollow nerve guidance conduits (NGC) are proposed alternativ...

Advancing cancer research using bioprinting for tumor-on-a-chip platforms

There is an urgent for a novel approach to cancer research with 1.7 million new cases of cancer occurring every year in the United States of America. Tumor models offer promise as a useful platform for cancer research wi...

Post-printing surface modification and functionalization of 3D-printed biomedical device

3D printing is a technology well-suited for biomedical applications due to its ability to create highly complex and arbitrary structures from personalized designs with a fast turnaround. However, due to a limited selecti...

Colony development of laser printed eukaryotic (yeast and microalga) microorganisms in co-culture

Laser Induced Forward Transfer (LIFT) bioprinting is one of a group of techniques that have been largely applied for printing mammalian cells so far. Bioprinting allows precise placement of viable cells in a defined matr...

Download PDF file
  • EP ID EP678726
  • DOI -
  • Views 171
  • Downloads 0

How To Cite

J. M. Lee, S. L. Sing, W. Y. Yeong (2020). Bioprinting of Multimaterials with Computer-aided Design/Computer-aided Manufacturing. International Journal of Bioprinting, 6(1), -. https://europub.co.uk/articles/-A-678726