A class of Julia exceptional functions
Journal Title: Карпатські математичні публікації - Year 2016, Vol 8, Issue 1
Abstract
The class of $p$-loxodromic functions (meromorphic functions, satisfying the condition $f(qz) = pf(z)$ for some $q \in \mathbb{C}\backslash \{0\}$ and all $z \in \mathbb{C}\backslash \{0\}$) is studied. Each $p$-loxodromic function is Julia exceptional. The representation of these functions as well as their zero and pole distribution are investigated.
Authors and Affiliations
V. S. Khoroshchak, A. Ya. Khrystiyanyn, D. V. Lukivska
ON A COMPLETE TOPOLOGICAL INVERSE POLYCYCLIC MONOID
We give sufficient conditions when a topological inverse l-polycyclic monoid Pl is absolutely Hclosed in the class of topological inverse semigroups. For every infinite cardinal l we construct the coarsest semigroup inve...
On a necessary condition for Lp (0<p<1) -convergence (upper boundedness) of trigonometric series
In this paper we prove that the condition ∑2nk=[n2]λk(p)(|n−k|+1)2−p=o(1)(=O(1)), is a necessary condition for the Lp(0<p<1)-convergence (upper boundedness) of a trigonometric series. Precisely, the results extend some r...
On the intersection of weighted Hardy spaces
Let $H^p_\sigma( \mathbb{C}_+)$, $1\leq p <+\infty$, $0\leq \sigma < +\infty$, be the space of all functions f analytic in the half plane $\mathbb{C}_{+}= \{ z: \text {Re} z>0 \}$ and such that $$ \|f\|:=\sup\limits_{...
Coupled fixed point theorems for weakly compatible mappings along with CLR property in Menger metric spaces
Coupled fixed point problems have attracted much attention in recent times. The aim of this paper is to extend the notions of E.A. property, CLR property and JCLR property for coupled mappings in Menger metric space and...
Paley-Wiener-type theorem for polynomial ultradifferentiable functions
The image of the space of ultradifferentiable functions with compact supports under Fourier-Laplace transformation is described. An analogue of Paley-Wiener theorem for polynomial ultradifferentiable functions is proved.