A Comparative Analysis of Application of Genetic Algorithm and Particle Swarm Optimization in Solving Traveling Tournament Problem (TTP)

Abstract

Traveling Tournament Problem (TTP) has been a major area of research due to its huge application in developing smooth and healthy match schedules in a tournament. The primary objective of a similar problem is to minimize the travel distance for the participating teams. This would incur better quality of the tournament as the players would experience least travel; hence restore better energy level. Besides, there would be a great benefit to the tournament organizers from the economic point of view as well. A well constructed schedule, comprising of diverse combinations of the home and away matches in a round robin tournament would keep the fans more attracted, resulting in turnouts in a large number in the stadiums and a considerable amount of revenue generated from the match tickets. Hence, an optimal solution to the problem is necessary from all respects; although it becomes progressively harder to identify the optimal solution with increasing number of teams. In this work, we have described how to solve the problem using Genetic algorithm and particle swarm optimization.

Authors and Affiliations

Avijit Haldar, Shyama Mondal, Alok Mukherjee, Kingshuk Chatterjee

Keywords

Related Articles

A review on Epigenome Editing using CRISPR-based Tools to Rejuvenate Skin Tissues

Genomic activity is controlled by a sophisticated series of cell functions known as the epigenome. The creation of tools capable of directly altering various processes is required to unravel this intricacy. Additionally,...

Emotion Recognition from Electroencephalogram Signals based on Deep Neural Networks

Emotion recognition using deep learning methods through electroencephalogram (EEG) analysis has marked significant progress. Nevertheless, the complexities and time-intensive nature of EEG analysis present challenges. Th...

Artificial Intelligence (AI) in Healthcare

There’s a famous quote “Machines will not replace physicians but physicians using AI will soon replace those not using it”. AI is revolutionizing healthcare. Many hospitals world-wide are accumulating Electronic Health R...

DNA Linear Block Codes: Generation, Error-Detection, and Error-Correction of DNA Codeword

In modern age, the increasing complexity of computation and communication technology is leading us towards the necessity of new paradigm. As a result, unconventional approach like DNA coding theory is gaining considerabl...

Analysis for Molecular Distinction in the Chloroplast DNA Sequences of Gymnospora montana (Celastraceae) and Belanites aegyptiaca (Balanitaceae) from Semi-arid Area

Gymnospora montana (Celastraceae) and Belanites aegyptiaca (Balanitaceae) showed marked similarity in their cpDNA sequences. Therefore, its detail analysis of cpDNA sequences is performed for codon use bias and its ind...

Download PDF file
  • EP ID EP724399
  • DOI https://doi.org/10.61797/ijbic.v1i2.168
  • Views 84
  • Downloads 0

How To Cite

Avijit Haldar, Shyama Mondal, Alok Mukherjee, Kingshuk Chatterjee (2022). A Comparative Analysis of Application of Genetic Algorithm and Particle Swarm Optimization in Solving Traveling Tournament Problem (TTP). International Journal of Bioinformatics and Intelligent Computing, 1(2), -. https://europub.co.uk/articles/-A-724399