A Feasibility Study of IMRT of Lung Cancer Using Gafchromic EBT3 Film

Journal Title: Journal of Biomedical Physics and Engineering - Year 2018, Vol 8, Issue 4

Abstract

Background: Intensity modulated radiation therapy (IMRT) is an advanced method for delivery of three dimensional therapies, which provides optimal dose distribution with giving multiple nonuniform fluency to the patient. The complex dose distribution of IMRT should be checked to ensure that the accurate dose is delivered. Today, film dosimetry is a powerful tool for radiotherapy treatment Quality Assurance (QA) and a good method to verify dose distribution in phantoms. Objective: This study aimed to evaluate the accuracy of IMRT treatment planning system, Prowess Panther® software, with Gafchromic EBT3 films in a inhomogeneity phantom. Material and Methods: The IMRT plan was generated by Prowess Panther® treatment planning system (TPS) version 5.2 on a inhomogeneity phantom, then it was irradiated by ONCOR linear accelerator (Linac) with 6 (MV) photon beam energy. The Gafchromic EBT3 film located between the phantom has measured the dose distribution.To compare between TPS calculated doses and film measured doses, Gamma criteria 3%/3 mm, 4%/4 mm, 5%/5 mm, 6%/6 mm and 7%/7 mm Dose Difference (DD) and Distance to Agreement (DTA), respectively were used. Results: Gammas passing rates for PTV are obtained 67.5% for 3%/3mm, 78.8% for 4%/4mm, 86.3% for 5%/5mm, 91.2% for 6%/6mm and 94.3% for 7%/7mm and for organs at risk is 72.4% for 3%/3mm, 82.8% for 4%/4mm, 89.8% for 5%/5mm, 93.3% for 6%/6mm and 95.4% for 7%/7mm (respectively DD/DTA). By increasing the range of criteria the capability increased. Conclusion: The results show that the use of EBT3 film in a inhomogeneity phantoms allows us to evaluate the dose differences between the EBT3 measured dose distribution and TPS calculated dose distribution .Hence, a result Prowess Panther® TPS can be used for IMRT technique treatment.

Authors and Affiliations

F. Falahati, A. Nickfarjam, M. Shabani

Keywords

Related Articles

Calculating Weighting Factors for Mixing Megavoltage Photon Beams to Achieve Desirable Dose Distribution in Radiotherapy

Background: In radiotherapy, low-energy photon beams are better adapted to the treated volume, and the use of high-energy beams can reduce hot spots in the radiation therapy. Therefore, mixing low and high energies with...

In-vitro Study of Photothermal Anticancer Activity of Carboxylated Multi-walled Carbon Nanotubes

Background and Objective: Multi-walled Carbon Nano Tubes (MWCNTs) as an important element of nanosciences have a remarkable absorption in the region of NIR window (650-900 nm) which can overcome the limitations of deep t...

An Aptamer-based Biosensor for Troponin I Detection in Diagnosis of Myocardial Infarction

Background: Acute myocardial infarction (MI) accounts for one third of deaths. Cardiac troponin I (TnI) is a reliable biomarker of cardiac muscle tissue injury and is employed in the early diagnosis of MI. Objective: In...

Exposure to Visible Light Emitted from Smartphones and Tablets Increases the Proliferation of Staphylococcus aureus: Can this be Linked to Acne?

Background: Due to rapid advances in modern technologies such as telecommunication technology, the world has witnessed an exponential growth in the use of digital handheld devices (e.g. smartphones and tablets). This dra...

A Glance at the Errors of Some Studies on the Health Effects of High Background Natural Radiation Areas

There is no place on the Earth, the planet we live on, where the natural background radiation level is zero. Since the birth and even in our fetal stage, we have been exposed to different sources of natural radiation. Li...

Download PDF file
  • EP ID EP457301
  • DOI -
  • Views 94
  • Downloads 0

How To Cite

F. Falahati, A. Nickfarjam, M. Shabani (2018). A Feasibility Study of IMRT of Lung Cancer Using Gafchromic EBT3 Film. Journal of Biomedical Physics and Engineering, 8(4), 347-356. https://europub.co.uk/articles/-A-457301