A generalization of a localization property of Besov spaces

Abstract

The notion of a localization property of Besov spaces is introduced by G. Bourdaud, where he has provided that the Besov spaces $B^{s}_{p,q}(\mathbb{R}^{n})$, with $s\in\mathbb{R}$ and $p,q\in[1,+\infty]$ such that $p\neq q$, are not localizable in the $\ell^{p}$ norm. Further, he has provided that the Besov spaces $B^{s}_{p,q}$ are embedded into localized Besov spaces $(B^{s}_{p,q})_{\ell^{p}}$ (i.e., $B^{s}_{p,q}\hookrightarrow(B^{s}_{p,q})_{\ell^{p}},$ for $p\geq q$). Also, he has provided that the localized Besov spaces $(B^{s}_{p,q})_{\ell^{p}}$ are embedded into the Besov spaces $B^{s}_{p,q}$ (i.e., $(B^{s}_{p,q})_{\ell^{p}}\hookrightarrow B^{s}_{p,q},$ for $p\leq q$). In particular, $B_{p,p}^{s}$ is localizable in the $\ell^{p}$ norm, where $\ell^{p}$ is the space of sequences $(a_{k})_{k}$ such that $\|(a_{k})\|_{\ell^{p}}<\infty$. In this paper, we generalize the Bourdaud theorem of a localization property of Besov spaces $B^{s}_{p,q}(\mathbb{R}^{n})$ on the $\ell^{r}$ space, where $r\in[1,+\infty]$. More precisely, we show that any Besov space $B^{s}_{p,q}$ is embedded into the localized Besov space $(B^{s}_{p,q})_{\ell^{r}}$ (i.e., $B^{s}_{p,q}\hookrightarrow(B^{s}_{p,q})_{\ell^{r}},$ for $r\geq\max(p,q)$). Also we show that any localized Besov space $(B^{s}_{p,q})_{\ell^{r}}$ is embedded into the Besov space $B^{s}_{p,q}$ (i.e., $(B^{s}_{p,q})_{\ell^{r}}\hookrightarrow B^{s}_{p,q},$ for $r\leq\min(p,q)$). Finally, we show that the Lizorkin-Triebel spaces $F^{s}_{p,q}(\mathbb{R}^{n})$, where $s\in\mathbb{R}$ and $p\in[1,+\infty)$ and $q\in[1,+\infty]$ are localizable in the $\ell^{p}$ norm (i.e., $F^{s}_{p,q}=(F^{s}_{p,q})_{\ell^{p}}$).

Authors and Affiliations

N. Ferahtia, S. E. Allaoui

Keywords

Related Articles

Coupled fixed point results on metric spaces defined by binary operations

In parallel with the various generalizations of the Banach fixed point theorem in metric spaces, this theory is also transported to some different types of spaces including ultra metric spaces, fuzzy metric spaces, unifo...

On Wick calculus on spaces of nonregular generalized functions of Levy white noise analysis

Development of a theory of test and generalized functions depending on infinitely many variables is an important and actual problem, which is stipulated by requirements of physics and mathematics. One of successful appr...

On the growth of a klasss of Dirichlet series absolutely convergent in half-plane

In terms of generalized orders it is investigated a relation between the growth of a Dirichlet series $F(s)=\sum\limits_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$ with the abscissa of asolute convergence $A\in (-\infty,+\infty...

Hypercyclic operators on algebra of symmetric analytic functions on $\ell_p$

In the paper, it is proposed a method of construction of hypercyclic composition operators on $H(\mathbb{C}^n)$ using polynomial automorphisms of $\mathbb{C}^n$ and symmetric analytic functions on $\ell_p.$ In particular...

Homomorphisms and functional calculus in algebras of entire functions on Banach spaces

In the paper the homomorphisms of algebras of entire functions on Banach spaces to a commutative Banach algebra are studied. In particular, it is proposed a method of constructing of homomorphisms vanishing on homogeneou...

Download PDF file
  • EP ID EP532703
  • DOI 10.15330/cmp.10.1.71-78
  • Views 68
  • Downloads 0

How To Cite

N. Ferahtia, S. E. Allaoui (2018). A generalization of a localization property of Besov spaces. Карпатські математичні публікації, 10(1), 71-78. https://europub.co.uk/articles/-A-532703