A generalization of a localization property of Besov spaces

Abstract

The notion of a localization property of Besov spaces is introduced by G. Bourdaud, where he has provided that the Besov spaces $B^{s}_{p,q}(\mathbb{R}^{n})$, with $s\in\mathbb{R}$ and $p,q\in[1,+\infty]$ such that $p\neq q$, are not localizable in the $\ell^{p}$ norm. Further, he has provided that the Besov spaces $B^{s}_{p,q}$ are embedded into localized Besov spaces $(B^{s}_{p,q})_{\ell^{p}}$ (i.e., $B^{s}_{p,q}\hookrightarrow(B^{s}_{p,q})_{\ell^{p}},$ for $p\geq q$). Also, he has provided that the localized Besov spaces $(B^{s}_{p,q})_{\ell^{p}}$ are embedded into the Besov spaces $B^{s}_{p,q}$ (i.e., $(B^{s}_{p,q})_{\ell^{p}}\hookrightarrow B^{s}_{p,q},$ for $p\leq q$). In particular, $B_{p,p}^{s}$ is localizable in the $\ell^{p}$ norm, where $\ell^{p}$ is the space of sequences $(a_{k})_{k}$ such that $\|(a_{k})\|_{\ell^{p}}<\infty$. In this paper, we generalize the Bourdaud theorem of a localization property of Besov spaces $B^{s}_{p,q}(\mathbb{R}^{n})$ on the $\ell^{r}$ space, where $r\in[1,+\infty]$. More precisely, we show that any Besov space $B^{s}_{p,q}$ is embedded into the localized Besov space $(B^{s}_{p,q})_{\ell^{r}}$ (i.e., $B^{s}_{p,q}\hookrightarrow(B^{s}_{p,q})_{\ell^{r}},$ for $r\geq\max(p,q)$). Also we show that any localized Besov space $(B^{s}_{p,q})_{\ell^{r}}$ is embedded into the Besov space $B^{s}_{p,q}$ (i.e., $(B^{s}_{p,q})_{\ell^{r}}\hookrightarrow B^{s}_{p,q},$ for $r\leq\min(p,q)$). Finally, we show that the Lizorkin-Triebel spaces $F^{s}_{p,q}(\mathbb{R}^{n})$, where $s\in\mathbb{R}$ and $p\in[1,+\infty)$ and $q\in[1,+\infty]$ are localizable in the $\ell^{p}$ norm (i.e., $F^{s}_{p,q}=(F^{s}_{p,q})_{\ell^{p}}$).

Authors and Affiliations

N. Ferahtia, S. E. Allaoui

Keywords

Related Articles

On the convergence criterion for branched continued fractions with independent variables

In this paper, we consider the problem of convergence of an important type of multidimensional generalization of continued fractions, the branched continued fractions with independent variables. These fractions are an ef...

On a necessary condition for Lp (0<p<1) -convergence (upper boundedness) of trigonometric series

In this paper we prove that the condition ∑2nk=[n2]λk(p)(|n−k|+1)2−p=o(1)(=O(1)), is a necessary condition for the Lp(0<p<1)-convergence (upper boundedness) of a trigonometric series. Precisely, the results extend some r...

An inverse problem for a 2D parabolic equation with nonlocal overdetermination condition N. Ye. Kinash

We consider an inverse problem of identifying the time-dependent coefficient $a(t)$ in a two-dimensional parabolic equation: $$u_t=a(t)\Delta u+b_1(x,y,t)u_x+b_2(x,y,t)u_y+c(x,y,t)u+f(x,y,t),\,(x,y,t)\in Q_T,$$ with the...

Lateral continuity and orthogonally additive operators

We generalize the notion of a laterally convergent net from increasing nets to general ones and study the corresponding lateral continuity of maps. The main result asserts that, the lateral continuity of an orthogonally...

First Reformulated Zagreb Indices of Some Classes of Graphs

A topological index of a graph is a parameter related to the graph; it does not depend on labeling or pictorial representation of the graph. Graph operations plays a vital role to analyze the structure and properties of...

Download PDF file
  • EP ID EP532703
  • DOI 10.15330/cmp.10.1.71-78
  • Views 70
  • Downloads 0

How To Cite

N. Ferahtia, S. E. Allaoui (2018). A generalization of a localization property of Besov spaces. Карпатські математичні публікації, 10(1), 71-78. https://europub.co.uk/articles/-A-532703