A Mechanistic Pharmacokinetic Model Elucidating the Disposition of Trastuzumab Emtansine (T-DM1), an Antibody–Drug Conjugate (ADC) for Treatment of Metastatic Breast Cancer
Journal Title: The AAPS Journal - Year 2014, Vol 16, Issue 5
Abstract
Trastuzumab emtansine (T-DM1) is an antibody–drug conjugate (ADC) therapeutic for treatment of human epidermal growth factor receptor 2 (HER2)-positive cancers. The T-DM1 dose product contains a mixture of drug-to-antibody ratio (DAR) moieties whereby the small molecule DM1 is chemically conjugated to trastuzumab antibody. The pharmacokinetics (PK) underlying this system and other ADCs are complex and have not been elucidated. Accordingly, we have developed two PK modeling approaches from preclinical data to conceptualize and understand T-DM1 PK, to quantify rates of DM1 deconjugation, and to elucidate the link between trastuzumab, T-DM1, and DAR measurements. Preclinical data included PK studies in rats (n = 34) and cynomolgus monkeys (n = 18) at doses ranging from 0.3 to 30 mg/kg and in vitro plasma stability. T-DM1 and total trastuzumab (TT) plasma concentrations were measured by enzyme-linked immunosorbent assay. Individual DAR moieties were measured by affinity capture liquid chromatography-mass spectrophotometry. Two PK modeling approaches were developed for T-DM1 using NONMEM 7.2 software: a mechanistic model fit simultaneously to TT and DAR concentrations and a reduced model fit simultaneously to TT and T-DM1 concentrations. DAR moieties were well described with a three-compartmental model and DM1 deconjugation in the central compartment. DM1 deconjugated fastest from the more highly loaded trastuzumab molecules (i.e., DAR moieties that are ≥3 DM1 per trastuzumab). T-DM1 clearance (CL) was 2-fold faster than TT CL due to deconjugation. The two modeling approaches provide flexibility based on available analytical measurements for T-DM1 and a framework for designing ADC studies and PK–pharmacodynamic modeling of ADC efficacy- and toxicity-related endpoints.
Authors and Affiliations
Brendan Bender, Douglas D. Leipold, Keyang Xu, Ben-Quan Shen, Jay Tibbitts, Lena E. Friberg
Evaluating In Vivo-In Vitro Correlation Using a Bayesian Approach
A Bayesian approach with frequentist validity has been developed to support inferences derived from a “Level A” in vivo-in vitro correlation (IVIVC). Irrespective of whether the in vivo data reflect in vi...
Performance Comparison of Various Maximum Likelihood Nonlinear Mixed-Effects Estimation Methods for Dose–Response Models
The online version of this article (doi:10.1208/s12248-012-9349-2) contains supplementary material, which is available to authorized users.
Effect of Type 2 Diabetes Mellitus and Diabetic Nephropathy on IgG Pharmacokinetics and Subcutaneous Bioavailability in the Rat
The objective of this research was to assess the effects of type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN) on the pharmacokinetics of human IgG (hIgG), an antibody isotype, in Zucker diabetic fatty (ZDF) r...
Population pharmacokinetics/pharmacodynamics of anesthetics
In this article we review how population pharmacokinetic/pharmacodynamic (PD) modeling has evolved in the specialty of anesthesiology, how anesthesiology benefited from the mixed-effects approach, and which features of m...
Pain Assessment in Human Fetus and Infants
In humans, painful stimuli can arrive to the brain at 20–22 weeks of gestation. Therefore several researchers have devoted their efforts to study fetal analgesia during prenatal surgery, and during painfu...