A Residual Network with Multi-Scale Dilated Convolutions for Enhanced Recognition of Digital Ink Chinese Characters by Non-Native Writers

Journal Title: International Journal of Knowledge and Innovation Studies - Year 2024, Vol 2, Issue 3

Abstract

Digital ink Chinese character recognition (DICCR) systems have predominantly been developed using datasets composed of native language writers. However, the handwriting of foreign students, who possess distinct writing habits and often make errors or deviations from standard forms, poses a unique challenge to recognition systems. To address this issue, a robust and adaptable approach is proposed, utilizing a residual network augmented with multi-scale dilated convolutions. The proposed architecture incorporates convolutional kernels of varying scales, which facilitate the extraction of contextual information from different receptive fields. Additionally, the use of dilated convolutions with varying dilation rates allows the model to capture long-range dependencies and short-range features concurrently. This strategy mitigates the gridding effect commonly associated with dilated convolutions, thereby enhancing feature extraction. Experiments conducted on a dataset of digital ink Chinese characters (DICCs) written by foreign students demonstrate the efficacy of the proposed method in improving recognition accuracy. The results indicate that the network is capable of more effectively handling the non-standard writing styles often encountered in such datasets. This approach offers significant potential for the error extraction and automatic evaluation of Chinese character writing, especially in the context of non-native learners.

Authors and Affiliations

Huafen Xu, Xiwen Zhang

Keywords

Related Articles

Enhanced Global Image Segmentation: Addressing Pixel Inhomogeneity and Noise with Average Convolution and Entropy-Based Local Factor

In the field of computer vision and digital image processing, the division of images into meaningful segments is a pivotal task. This paper introduces an innovative global image segmentation model, distinguished for its...

Parametric Similarity Measurement of T-Spherical Fuzzy Sets for Enhanced Decision-Making

The T-spherical fuzzy set (T-SFS), an advancement over the spherical fuzzy set (SFS), offers a refined approach for addressing contradictions and ambiguities in data. In this context, similarity measures (SMs) serve as c...

Selection of CRM Systems Using Objective Criteria for the Needs of Small Companies

This research examines customer relationship management (CRM) systems using multi-criteria decision-making (MCDM) methods, with the intention of selecting the most suitable solution for small companies. The main goal of...

Advanced Estimation of Orange Tree Age Using Fuzzy Inference and Linear Regression Models

The accurate estimation of the age of orange trees is a critical task in orchard management, providing valuable insights into tree growth, yield prediction, and the implementation of optimal agricultural practices. Tradi...

Enhanced Fault Diagnosis in Motor Bearings: Leveraging Optimized Wavelet Transform and Non-Local Attention

Recent advancements in non-destructive testing methodologies have significantly propelled the efficiency of bearing defect detection, vital for maintaining optimal final quality standards. This study introduces a novel a...

Download PDF file
  • EP ID EP754226
  • DOI https://doi.org/10.56578/ijkis020302
  • Views 27
  • Downloads 1

How To Cite

Huafen Xu, Xiwen Zhang (2024). A Residual Network with Multi-Scale Dilated Convolutions for Enhanced Recognition of Digital Ink Chinese Characters by Non-Native Writers. International Journal of Knowledge and Innovation Studies, 2(3), -. https://europub.co.uk/articles/-A-754226