A Semi-Automatic Algorithm for Estimating Cobb Angle

Journal Title: Journal of Biomedical Physics and Engineering - Year 2019, Vol 9, Issue 3

Abstract

Background: Scoliosis is the most common type of spinal deformity. A universal and standard method for evaluating scoliosis is Cobb angle measurement, but several studies have shown that there is intra- and inter- observer variation in measuring cobb angle manually. Objective: Develop a computer- assisted system to decrease operator-dependent errors in Cobb angle measurement. Methods: The spinal cord in the given x-ray image of the spine is highlighted using contract-stretching technique. The overall structural curvature of the spine is determined by a semi-automatic algorithm aided by the operator. Once the morphologic curve of the spine is determined, in the last step the cobb-angle is estimated by calculating the angle between two normal lines to the spinal curve at the inflection points of the curve. Results: Evaluation results of the developed algorithms using 14 radiographs of patients (4 - 40 years old) with cobb angle ranges from 34 - 82 degrees, revealed that the developed algorithm accurately estimated cobb angle. Statistical analysis showed that average angle values estimated using the developed method and that provided by experts are statistically equal. The correlation coefficient between the angle values estimated using the developed algorithm and those provided by the expert is 0.81. Conclusion: Compared with previous algorithms, the developed system is easy to use, less operator-dependent, accurate, and reliable. The obtained results are promising and show that the developed computer-based system could be used to quantify scoliosis by measuring Cobb angle. Citation: Safari A, Parsaei H, Zamani A, Pourabbas B. A Semi-Automatic Algorithm for Estimating Cobb Angle. J Biomed Phys Eng. 2019;9(3):317-326. https://doi.org/10.31661/jbpe.v9i3Jun.730.

Authors and Affiliations

H. Parsaei, A. Safari, B. Pourabbas

Keywords

Related Articles

Diagnosis of OCD Patients Using Drawing Features of Bender Gestalt Shapes

Background: Since psychological tests such as questionnaire or drawing tests are almost qualitative, their results carry a degree of uncertainty and sometimes subjectivity. The deficiency of all drawing test is that the...

A Glance at the Errors of Some Studies on the Health Effects of High Background Natural Radiation Areas

There is no place on the Earth, the planet we live on, where the natural background radiation level is zero. Since the birth and even in our fetal stage, we have been exposed to different sources of natural radiation. Li...

A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images

Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact...

Applications of Inertial Navigation Systems in Medical Engineering

Inertial navigation systems are of the most important and practical systems in determining the velocity, position and attitude of the vehicles and different equipment. In these systems, three accelerometers and three gyr...

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artif...

Download PDF file
  • EP ID EP613580
  • DOI -
  • Views 99
  • Downloads 0

How To Cite

H. Parsaei, A. Safari, B. Pourabbas (2019). A Semi-Automatic Algorithm for Estimating Cobb Angle. Journal of Biomedical Physics and Engineering, 9(3), 317-326. https://europub.co.uk/articles/-A-613580