A Semiconductor-Based Refrigeration System for Cooling of Water: Design, Construction, and Performance Tests
Journal Title: Power Engineering and Engineering Thermophysics - Year 2023, Vol 2, Issue 1
Abstract
Convectional refrigeration is one of the causes of global warming as carbon dioxide is emitted from its refrigerant to the environment. Semiconductor-based refrigeration is one of the alternative technologies that can lower the carbon dioxide emissions to the atmosphere as it uses electron gas instead of a refrigerant as its working fluid. The present work aims to design and construct a semiconductor-based refrigerator and test its performance. The refrigerator was designed to cool 4×10-3 m-3 of water from a temperature of 30℃ to 0℃. The tests performed on the refrigerator were retention time of the temperature of the water, change in the water temperature at different intervals of time, and the cooling rate of the water. The results of the tests indicated that the temperature of the water dropped from its initial value of 30℃ to 0℃ after 225 minutes, and maintained the temperature of 0℃ for 15 minutes. After the refrigerator was switched off, the temperature of 0℃ was retained for approximately 30 minutes, and then took 192 minutes to rise from 0℃ to its initial value of 30℃. The average cooling rate for the duration of 225 minutes was 0.133℃/min. The current work widens the studies on the use of alternative technologies for convectional refrigeration.
Authors and Affiliations
Taiwo O. Oni, Samuel J. Aliyu, Bernard A. Adaramola, Oluwasina L. Rominiyi
Two-Phase Liquid-Solid Hydrodynamics of Inclined Fluidized Beds
Although many fluidized systems are not vertically oriented, little research has been done on fluidization within inclined channels. The fluidization of the gravitational force and the tensile force may be substantially...
Energy and Exergy Evaluation of a Dual Fuel Combined Cycle Power Plant: An Optimization Case Study of the Khoy Plant
This study examines the energy and exergy performance of the Khoy dual fuel combined cycle power plant, focusing on dual pressure heat recovery steam generators (HRSGs). The aim is to identify an optimal design through t...
Numerical Analysis of Heat Transfer Enhancement Using Fe3O4 Nanofluid Under Variable Magnetic Fields
This study conducts a numerical investigation into the heat transfer enhancement of Fe3O4-distilled water nanofluid within a magnetically influenced environment. The research is centered on the analysis of the impact of...
Photovoltaic Solar Energy for Street Lighting: A Case Study at Kuwaiti Roundabout, Gaza Strip, Palestine
As populations expand and cities grow, the horizontal development of sustainable initiatives, coupled with the preservation of natural resources and the shift towards agricultural ventures, has led to an increased necess...
Influence of Nanoparticle Concentrations on Heat Transfer in Nano-Enhanced Phase Change Materials
This investigation examines the effects of varied nanoparticle concentrations, such as zinc oxide (ZnO), copper oxide (CuO), and aluminum oxide (Al2O3), on the mass fraction and melting characteristics within nano-enhanc...