A System for Continuous Estimating and Monitoring Cardiac Output via Arterial Waveform Analysis

Journal Title: Journal of Biomedical Physics and Engineering - Year 2017, Vol 7, Issue 2

Abstract

Background: Cardiac output (CO) is the total volume of blood pumped by the heart per minute and is a function of heart rate and stroke volume. CO is one of the most important parameters for monitoring cardiac function, estimating global oxygen delivery and understanding the causes of high blood pressure. Hence, measuring CO has always been a matter of interest to researchers and clinicians. Several methods have been developed for this purpose, but a majority of them are either invasive, too expensive or need special expertise and experience. Besides, they are not usually risk free and have consequences. Objective: Here, a semi-invasive system was designed and developed for continuous CO measurement via analyzing and processing arterial pulse waves. Results: Quantitative evaluation of developed CO estimation system was performed using 7 signals. It showed that it has an acceptable average error of (6.5%) in estimating CO. In addition, this system has the ability to consistently estimate this parameter and to provide a CO versus time curve that assists in tracking changes of CO. Moreover, the system provides such curve for systolic blood pressure, diastolic blood pressure, average blood pressure, heart rate and stroke volume. Conclusion: Evaluation of the results showed that the developed system is capable of accurately estimating CO. The curves which the system provides for important parameters may be valuable in monitoring hemodynamic status of high-risk surgical patients and critically ill patients in Intensive Care Units (ICU). Therefore, it could be a suitable system for monitoring hemodynamic status of critically ill patients.

Authors and Affiliations

A Vakily, H Parsaei, M M Movahhedi, M A Sahmeddini

Keywords

Related Articles

Adaptive Response Induced by Pre-Exposure to 915 MHz Radiofrequency: A Possible Role for Antioxidant Enzyme Activity

Background: Over the past few years, the rapid use of high frequency electromagnetic fields like mobile phones has raised global concerns about the negative health effects of its use. Adaptive response is the ability of...

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification a...

Evaluation of Lung Density and Its Dosimetric Impact on Lung Cancer Radiotherapy: A Simulation Study

Background: The dosimetric parameters required in lung cancer radiation therapy are taken from a homogeneous water phantom; however, during treatment, the expected results are being affected because of its inhomogeneity....

Comparison of Parametric and Nonparametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura

Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography mea...

Editorial

there is no Abstract.

Download PDF file
  • EP ID EP330423
  • DOI -
  • Views 125
  • Downloads 0

How To Cite

A Vakily, H Parsaei, M M Movahhedi, M A Sahmeddini (2017). A System for Continuous Estimating and Monitoring Cardiac Output via Arterial Waveform Analysis. Journal of Biomedical Physics and Engineering, 7(2), 181-190. https://europub.co.uk/articles/-A-330423