Acoustic wave detection of laser shock peening
Journal Title: Opto-Electronic Advances - Year 2018, Vol 1, Issue 9
Abstract
In order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoustic emission sensor at a defined position is used to collect the acoustic wave signals that propagate in the air. The acoustic wave signal is sampled, stored, digitally filtered and analyzed by the online laser shock peening detection system. Then the system gets the acoustic wave signal energy to measure the quality of the laser shock peening by establishing the correspondence between the acoustic wave signal energy and the laser pulse energy. The surface residual stresses of the samples are measured by X-ray stress analysis instrument to verify the reliability. The results show that both the surface residual stress and acoustic wave signal energy are increased with the laser pulse energy, and their growth trends are consistent. Finally, the empirical formula between the surface residual stress and the acoustic wave signal energy is established by the cubic equation fitting, which will provide a theoretical basis for the real-time online detection of laser shock peening.
Authors and Affiliations
Jiajun Wu, Jibin Zhao*, Hongchao Qiao, Xuejun Liu, Yinuo Zhang, Taiyou Hu
Collinear holographic data storage technologies
In the era of information explosion, the demand of data storage is increased dramatically. Holographic data storage technology is one of the most promising next-generation data storage technologies due to its high storag...
Toward transparent projection display: recent progress in frequency-selective scattering of RGB light based on metallic nanoparticle’s localized surface plasmon resonance
A transparent display simultaneously enables visualization of the images displayed on it as well as the view behind it, and therefore can be applied to, for instance, augmented reality (AR), virtual reality (VR), and hea...
An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory
Graphene oxide (GO) ultrathin flat lenses have provided a new and viable solution to achieve high resolution, high efficiency, ultra-light weight, integratable and flexible optical systems. Current GO lenses are designed...
Athermal third harmonic generation in micro-ring resonators
Nonlinear high-harmonic generation in micro-resonators is a common technique used to extend the operating range of applications such as self-referencing systems and coherent communications in the visible region. However,...
Mid-infrared all-fiber gain-switched pulsed laser at 3 μm
Mid-infrared (MIR) fiber pulsed lasers are of tremendous application interest in eye-safe LIDAR, spectroscopy, chemi-cal detection and medicine. So far, these MIR lasers largely required bulk optical elements, complex fr...