Underwater image enhancement based on red channel weighted compensation and gamma correction model
Journal Title: Opto-Electronic Advances - Year 2018, Vol 1, Issue 10
Abstract
Due to the special characteristics of light in water, the information of the red channel is seriously attenuated in collected image. This causes other colors to dominate the image. This paper proposes an underwater image enhancement algorithm based on red channel weighted compensation and gamma correction model. Firstly, by analyzing the attenuation characteristics of RGB channels, the intensity and the edge information of red channel are compensated by weighting the attenuation coefficient ratio between different channels to correct the chromaticity. Then the gamma correction model is employed to stretch the intensity range to enhance the contrast which makes the image look clearer. The experimental results show that the proposed algorithm can correct the color cast effect and improve the contrast by nearly 2 times for the underwater images with too much red component attenuation.
Authors and Affiliations
Wending Xiang, Ping Yang*, Shuai Wang, Bing Xu, Hui Liu
Acoustic wave detection of laser shock peening
In order to overcome the existing disadvantages of offline laser shock peening detection methods, an online detection method based on acoustic wave signals energy is provided. During the laser shock peening, an acoustic...
Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra
We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4 liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by the str...
Printing photovoltaics by electrospray
Solution processible photovoltaics (PV) are poised to play an important role in scalable manufacturing of low-cost solar cells. Electrospray is uniquely suited for fabricating PVs due to its several desirable characteris...
A novel spoof surface plasmon polariton structure to reach ultra-strong field confinements
Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits. However, to provide stronger field confinement, larger wid...
Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework
In the context of this work, a prototype hybrid photoacoustic (PA) and optical system for the on-line monitoring of laser cleaning procedures is presented. The developed apparatus has enabled the detection of MHz frequen...