An algebra governing reduction of quaternary structures to ternary structures III. A study of generators of the resulting algebra
Journal Title: Bulletin de la Société des sciences et des lettres de Łódź, Série: Recherches sur les déformations - Year 2016, Vol 0, Issue 1
Abstract
By applying the reduction matrices of Part I we analyzed in Part II the multiplication tables of generators of the cubic and nonion algebras, deduced the remaining 3 x 3 sub- tables for the resulting algebra, determined the remaining 9 generators, and studied the corresponding multiplication tables. In this, Part III of the paper, we consider the problem of linear independence of the resulting generators. After checking the dimension 18 of the algebra (duodevicenion algebra), we extend the Peirce-Sylvester matrix quarter-plane to the whole plane. Choose in each quarter the generator related bridging scales, and analyse from that point of view the resulting duodevicenion algebra and other related \daughter al- gebras": quasi-quaternion, quasi-para-quaternion, quasi-octonion and quasi-para-octonion.
Authors and Affiliations
Małgorzata Nowak-Kępczyk
On optimal subspaces for Kolmogorov widths of classes of 2π-periodic analytic functions
The following problem arises: to nd optimal subspaces for Kolmogorov widths of classes of convolutions with generated kernels, which may increase the oscillations.
Dual-Phase-Lag heat equation modelling of the nanoelectronic structures coefficient estimation temperatures / Modelowanie rozkładu temperatury w strukturach nanoelektronicznych przy użyciu modelu Dual-Phase-Lag
-
On some coeffcient inequality in the subclass of close-to-convex functions
A coefficient inequality related to the Fekete-Szegö-Goluzin problem in some subclass of close-to-convex functions is shown.
Classes of convex polyhedra closed under Minkowski addition / Klasy wielościanów wypukłych zamknięte ze względu na dodawanie Minkowskiego
In this paper we study classes of convex polyhedra with normal vectors belonging to a given finite set G of vectors. Since a Minkowski sum A+B of two polyhedra may have normal vectors which are normal to no face of A or...
Some estimations of the Łojasiewicz exponent for polynomial mappings on semialgebraic sets / Pewne szacowania wykładnika Łojasiewicza dla odwzorowań wielomianowych na zbiorach semialgebraicznych
We strengthen some estimations of the local and global Lojasiewicz exponent for polynomial mappings on closed semialgebraic sets obtained by K. Kurdyka, S. Spodzieja and A. Szlachcińska in [4].