An algebra governing reduction of quaternary structures to ternary structures III. A study of generators of the resulting algebra
Journal Title: Bulletin de la Société des sciences et des lettres de Łódź, Série: Recherches sur les déformations - Year 2016, Vol 0, Issue 1
Abstract
By applying the reduction matrices of Part I we analyzed in Part II the multiplication tables of generators of the cubic and nonion algebras, deduced the remaining 3 x 3 sub- tables for the resulting algebra, determined the remaining 9 generators, and studied the corresponding multiplication tables. In this, Part III of the paper, we consider the problem of linear independence of the resulting generators. After checking the dimension 18 of the algebra (duodevicenion algebra), we extend the Peirce-Sylvester matrix quarter-plane to the whole plane. Choose in each quarter the generator related bridging scales, and analyse from that point of view the resulting duodevicenion algebra and other related \daughter al- gebras": quasi-quaternion, quasi-para-quaternion, quasi-octonion and quasi-para-octonion.
Authors and Affiliations
Małgorzata Nowak-Kępczyk
No-hole λ-L (k, k – 1, …, 2,1)-labeling for square grid / BEZLUKOWE λ -L(K;K - 1; : : : ;2;1)-ETYKIETOWANIEKWADRATOWEJ KRATY
-
Volumes of polyhedra in terms of determinants of rectangular matrices / Objętości wielościanów wyrażone za pomocą wyznaczników macierzy prostokątnych
Formulas for volumes of octahedra, tetragonal pyramids, triangular prisms and truncated triangular prisms, involving determinants of rectangular matrices, are presented.
Duality Principle for some σ-ideals of subsets of the real line / Zasada dualności dla pewnych σ- ideałów podzbiorów prostej rzeczywistej
In this note there is proved that a theorem analogous to Sierpinski-Erdös duality theorem for some σ -ideals of subsets of the real line and the family of sets of the first category on the real line is valid.
Density topologies on the plane between ordinary and strong. III
-
Topological counterpart of the Noshiro-Warschawski theorem for complex-valued functions / Topologiczny odpowiednik twierdzenia Noshiro-Warschawskiego dla funkcji zespolonych
-