Analysis of the Exergy of Combustion the Diesel and Biodiesel Fuel in a DI Diesel Engine

Journal Title: Journal of Agricultural Machinery - Year 2019, Vol 9, Issue 1

Abstract

IntroductionIn recent years, the exergy analysis method has been widely used in the design, simulation and performance assessment of various thermal systems. In this regard, this method may be applied to various types of engines for identifying losses and efficiencies. This analysis is based on the second law of thermodynamic. Exergy is a potential or quality of energy. It is possible to make sustainable quality assessment of energy.  In this study, the second law of thermodynamics is employed to analyze the quantity and quality of exergy in a fourstroke, four-cylinder, diesel engine using diesel fuel and biodiesel fuel.Materials and MethodsFour experiment variables in the present study including the operating parameters, load and speed, and the added volume of biodiesel of diesel fuel were considered as effective factors on the Break  exergy efficiency. Designs that can fit model must have at least three different levels in each variable. This is satisfied by Central Composite Rotatable Designs (CCRD). Similar to the case of the energy analysis, the same assumptions were valid for exergy analysis; the whole engine was considered to be a steady-state open system. For exergy analyses, the entire engine was considered to be a control volume and a steady-state open system. Fuel and air enter, and mechanical work, heat loss and exhaust gases leave the control volume at a constant rate. The exergy balance for the control volume can be stated as.                                                              where  is the exergy transfer rate associated with the heat loss from the control volume to the environment, assumed to be through cooling water;  is the exergy work rate, which is equal to the energetic work rate;  is the mass flow rate;  is specific flow exergy; and  is the exergy destruction (irreversibility) rate. Results and Discussionexergy efficiency increased with increasing engine load. This relationship could be attributed to the reason that brake power increased with increasing engine load, and the other side, there was a positive direct relationship between brake power and exergy efficiency, resulting in an increase of exergy efficiency. Although fuel consumption increased along with increasing engine load, increase in the brake power was much greater than increase in the fuel consumption. On the other hand, an increase in the engine load enhanced combustor temperature which was provided an appropriate condition for combustion and caused an increase in cylinder pressure. At all engine operating conditions, with increasing engine speed, the thermal efficiency at first increased, at moderate speed reached to a maximum amount and finally with more increase in engine speed, the thermal efficiency decreased. The initial increase in thermal efficiency could be attributed to the increase in air to fuel ratio and engine torque which caused an increase in the brake power. Decreasing thermal efficiency in high levels of engine speed could be caused by a decrease in volumetric efficiency of the combustion chamber, because of the time limit on filling cylinder. With increasing biodiesel concentration in the fuel blend, exergy efficiency decreased. The reason could be due to the lower calorific value and the higher viscosity of biodiesel compared to diesel fuel.ConclusionAt all engine operating conditions, the exergy efficiency of the engine increased with increasing engine load also with increasing percentages of biodiesel into synthetic fuel, exergy efficiency increased. 43.09% of the fuel exergy was completely destructed and was not convertible to work. The results of optimization indicated that the most exergy efficiency (37.72%) was occurred for the pure diesel at 2036 rpm and 95% load.

Authors and Affiliations

G. Khoobbakht,

Keywords

Related Articles

Effect of electrostatic field on dynamic friction coefficient of pistachio

Introduction: Separation and grading of agricultural products from the production to supply, has notable importance. The separation can be done based on physical, electrical, magnetic, optical properties and etc. It is n...

Design, Development and Evaluation of a Mass Flow Sensor for Grain Combine Harvesters

In grain yield monitoring system, the amount of clean grain mass flow rate to the storage bin is the most important yield property. In this research, an impact-plate type grain mass flow sensor was designed, developed an...

Analytical and Experimental Draft Force Evaluation of Plastic Coated Chisel Tines

Introduction Improving the efficiency of all agricultural operations has always been important for farmers and engineers. It is well known that the force required for cutting a soil using narrow blades is a function of s...

Evaluation and Optimization of Energy and Environmental Indicators Using Life Cycle Assessment and Data Envelopment Analysis(Case Study: Industrial Cattle Farms in Northern Khuzestan)

Introduction: Environmental crises and resource depletion have adversely affected environmental resources and food security in the world. Therefore, with the global population growth in the coming years and the rising ne...

Evaluation and comparing of natural and forced solar dryer for mint drying in Khuzestan province

Introduction Many vegetables such as mint are highly seasonal in nature. They are available in plenty at a particular period of time in specific regions that many times result in market glut. Due to perishable nature, hu...

Download PDF file
  • EP ID EP717912
  • DOI -
  • Views 49
  • Downloads 0

How To Cite

G. Khoobbakht, (2019). Analysis of the Exergy of Combustion the Diesel and Biodiesel Fuel in a DI Diesel Engine. Journal of Agricultural Machinery, 9(1), -. https://europub.co.uk/articles/-A-717912