APPLYING THE METHOD OF MAXIMUM CONTRIBUTIONS TO THE MAGNETOGRAM INVERSION TECHNIQUE

Journal Title: Solar-Terrestrial Physics - Year 2020, Vol 6, Issue 4

Abstract

Fundamentals of the spherical harmonic analysis (SHA) of the geomagnetic field were created by Gauss. They acquired the classical Chapman — Schmidt form in the first half of the XXth century. The SHA method was actively developed for domestic geomagnetology by IZMIRAN, and then, since the start of the space age, by ISTP SB RAS, where SHA became the basis for a comprehensive method of MIT (magnetogram inversion technique). SHA solves the inverse problem of potential theory and calculates sources of geomagnetic field variations (GFV) - internal and external electric currents. The SHA algorithm forms a system of linear equations (SLE), which consists of 3K equations (three components of the geomagnetic field, K is the number of ground magnetic stations). Small changes in the left and (or) right side of such SLE can lead to a significant change in unknown variables. As a result, two consecutive instants of time with almost identical GFV are approximated by significantly different SHA coefficients. This contradicts both logic and real observations of the geomagnetic field. The inherent error of magnetometers, as well as the method for determining GFV, also entails the instability of SLE solution. To solve such SLEs optimally, the method of maximum contribution (MMC) was developed at ISTP SB RAS half a century ago. This paper presents basics of the original method and proposes a number of its modifications that increase the accuracy and (or) speed of solving the SLEs. The advantage of MMC over other popular methods is shown, especially for the Southern Hemisphere of Earth.

Authors and Affiliations

Penskikh Yu. V.

Keywords

Related Articles

INVESTIGATING SEASONAL FEATURES OF ELECTRON TEMPERATURE ENHANCEMENT REGIONS IN THE SUBAURORAL IONOSPHERE

The electron temperature enhancement is known to occur in the main ionospheric trough during geomagnetic disturbances. In this paper, we study fea-tures of the formation of the electron temperature (Te) enhancement in th...

EARLY DIAGNOSTICS OF GEOMAGNETIC STORMS BASED ON OBSERVATIONS OF SPACE MONITORING SYSTEMS

We address the problem of early diagnostics of geomagnetic storms based on the use of models of coordinates of movements of centers of solar coronal mass ejections (CME) and observations of their angular positions obtain...

ELECTRON DENSITY IN THE F1 LAYER OVER NORILSK IN 2007–2014

We report the results of the analysis of annual variations in daily electron density (N) for various solar activity conditions — minimum, rise, and maximum (2007–2014) — obtained from digisonde measurements at the ionosp...

METHOD OF STUDYING INFRASOUND WAVES FROM THUNDERSTORMS

The paper provides an overview of studies of infrasound signals from thunderstorms over a period of more than 30 years. We deal with several types of infrasound signals from thunderstorms detected at the ISTP SB RAS infr...

IONOSPHERIC EFFECTS OF TWO SOLAR FLARES IN THE MAXIMUM OF SOLAR CYCLE 23 AND IN THE MINIMUM OF SOLAR CYCLE 24

Using data from the GPS and GLONASS navigation satellite systems, we analyze the responses of the mid-latitude ionosphere to the extreme solar flares that occurred at the maximum of solar cycle 23 (October 28, 2003) and...

Download PDF file
  • EP ID EP700244
  • DOI 10.12737/stp-64202009
  • Views 97
  • Downloads 0

How To Cite

Penskikh Yu. V. (2020). APPLYING THE METHOD OF MAXIMUM CONTRIBUTIONS TO THE MAGNETOGRAM INVERSION TECHNIQUE. Solar-Terrestrial Physics, 6(4), -. https://europub.co.uk/articles/-A-700244