Banknote Classification Using Artificial Neural Network Approach

Abstract

In this study, clustering process has been performed using artificial neural network (ANN) approach on the pictures belonging to our dataset to determine if the banknotes are genuine or counterfeit. Four input parameters, one hidden layer with 10 neurons and one output has been used for the ANN. All of these parameters were real-valued continuous. Data were extracted from images that were taken from genuine and forged banknote-like specimens. For digitization, an industrial camera usually used for print inspection was used. The final images have 400x 400 pixels. Due to the object lens and distance to the investigated object gray-scale pictures with a resolution of about 660 dpi were gained. Wavelet Transform tool were used to extractfeatures from images. Four input parameters are processed in the hidden layer with 10 neurons and the output realizes the clustering process. The classification process of 1372 unit data by using ANN approach is sure to be a success as much as the actual data set. The regression results of the clustering process is considerably well. It is determined that the training regression is 0,99914, testing regression is 0,99786 and the validation regression is 0,9953, respectively. Based on the results obtained, it is seen that classification process using ANN is capable of achieving outstanding success.

Authors and Affiliations

Esra Kaya *| Selcuk University,Konya – 42075, Turkey, Ali Yasar| Selcuk University,Konya – 42075, Turkey, Ismail Saritas| Gneysinir Vocational School of Higher Education, Konya – 42190, Turkey

Keywords

Related Articles

Fuzzy approach to estimate the demand and supply quantitative imbalance at the labor market of information technology specialists

This document considers the processes of modelling supply and demand interactions in the labour market for information technology experts (IT professionals) and management of their quantitative disparity at the macro lev...

Comparative Study of Krill Herd, Firefly and Cuckoo Search Algorithms for Unimodal and Multimodal Optimization

Today, in computer science, a computational challenge exists in finding a globally optimized solution from an enormously large search space. Various metaheuristic methods can be used for finding the solution in a large s...

Rainfall Runoff Modelling Using Generalized Neural Network and Radial Basis Network

Rainfall runoff study has a wide scope in water resource management. To provide a reliable prediction model is of paramount importance. Runoff prediction is carried out using generalized regression neural network and rad...

Atmospheric and light-induced effects in nanostructured silicon deposited by capacitively and inductively-coupled plasma

Renewable sources of energy have demonstrated the potential to replace much of the conventional sources but the cost continues to pose a challenge. Efforts to reduce cost involve highly efficient and less expensive mater...

Statistical Methods for Quantitatively Detecting Fungal Disease from Fruits’ Images

In this paper we have proposed statistical methods for detecting fungal disease and classifying based on disease severity levels. Most fruits diseases are caused by bacteria, fungi, virus, etc of which fungi are respons...

Download PDF file
  • EP ID EP792
  • DOI 10.18201/ijisae.55250
  • Views 498
  • Downloads 23

How To Cite

Esra Kaya *, Ali Yasar, Ismail Saritas (2016). Banknote Classification Using Artificial Neural Network Approach. International Journal of Intelligent Systems and Applications in Engineering, 4(1), 16-19. https://europub.co.uk/articles/-A-792