Statistical Methods for Quantitatively Detecting Fungal Disease from Fruits’ Images

Abstract

In this paper we have proposed statistical methods for detecting fungal disease and classifying based on disease severity levels. Most fruits diseases are caused by bacteria, fungi, virus, etc of which fungi are responsible for a large number of diseases in fruits. In this study images of fruits, affected by different fungal symptoms are collected and categorized based on disease severity. Statistical features like block wise, gray level co-occurrence matrix (GLCM), gray level runlength matrix (GLRLM) are extracted from these images. The nearest neighbor classifier using Euclidean distance was used to classify images as partially affected, moderately affected, severely affected and normal. The average classification accuracies are 91.37% and 86.715% using GLCM and GLRLM features. The average classification accuracy has increased to 94.085% using block wise features.

Authors and Affiliations

Jagadeesh D. Pujari| S.D.M.College of Engg. &Tech, Dharwar – 580 008, India, Rajesh Yakkundimath*| KLE.Institute of Technology, Hubli – 580 030, India, Abdulmunaf S. Byadgi| University of Agricultural Sciences, Dharwar – 580005, India

Keywords

Related Articles

Application of Angle-Modulated Particle Swarm Optimization Technique in Power System Controlled Separation WAP

One of the recommended preventive plans against the wide area disturbances is WAP, Wide Area Protection, through controlled system splitting or separation. In this paper, authors are proposing three simple algorithms tha...

A highly Reliable and Fully Automated Classification System for Sleep Apnea Detection

Sleep apnea (SA) in the form of Obstructive sleep apnea (OSA) is becoming the most common respiratory disorder during sleep, which is characterized by cessations of airflow to the lungs. These cessations in breathing mus...

Classification of Different Wheat Varieties by Using Data Mining Algorithms

There are various applications using computer-aided quality controlling system. In this study, seed data set acquired from UCI machine learning database was used. The purpose of the study is to perform the operations for...

Cloud Computing Environments Which Can Be Used in Health Education

At the present time, it is known that cloud computing technologies began to be used widely in information technology. The purpose of this study is to provide information about cloud technologies that can be used in healt...

About a discussion ‘‘Development a new mutation operator to solve the Traveling Salesman Problem by aid of genetic algorithms’’, by Murat Albayrak and Novruz Allahverdi, 2011. Expert System with Applications, 38; 3, pp. 1313–1320.

In the Short Communication published in “Expert Systems with Application” in volume 41 2014, (Comments on "Albayrak, M., & Allahverdi N. (2011). Development a new mutation operator to solve the Traveling Salesman Problem...

Download PDF file
  • EP ID EP747
  • DOI -
  • Views 603
  • Downloads 39

How To Cite

Jagadeesh D. Pujari, Rajesh Yakkundimath*, Abdulmunaf S. Byadgi (2013). Statistical Methods for Quantitatively Detecting Fungal Disease from Fruits’ Images. International Journal of Intelligent Systems and Applications in Engineering, 1(4), 60-67. https://europub.co.uk/articles/-A-747